4,626 research outputs found

    On small Mixed Pattern Ramsey numbers

    Full text link
    We call the minimum order of any complete graph so that for any coloring of the edges by kk colors it is impossible to avoid a monochromatic or rainbow triangle, a Mixed Ramsey number. For any graph HH with edges colored from the above set of kk colors, if we consider the condition of excluding HH in the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted Mk(H)M_k(H). We determine this function in terms of kk for all colored 44-cycles and all colored 44-cliques. We also find bounds for Mk(H)M_k(H) when HH is a monochromatic odd cycles, or a star for sufficiently large kk. We state several open questions.Comment: 16 page

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k≥3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    A New Game Invariant of Graphs: the Game Distinguishing Number

    Full text link
    The distinguishing number of a graph GG is a symmetry related graph invariant whose study started two decades ago. The distinguishing number D(G)D(G) is the least integer dd such that GG has a dd-distinguishing coloring. A distinguishing dd-coloring is a coloring c:V(G)→{1,...,d}c:V(G)\rightarrow\{1,...,d\} invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph GG with a set of d∈N∗d\in\mathbb N^* colors. Alternately, the two players choose a vertex of GG and color it with one of the dd colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph GG, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending on who starts. These invariants could be infinite, thus we start by giving sufficient conditions to have infinite game distinguishing numbers. We also show that for graphs with cyclic automorphisms group of prime odd order, both game invariants are finite. After that, we define a class of graphs, the involutive graphs, for which the game distinguishing number can be quadratically bounded above by the classical distinguishing number. The definition of this class is closely related to imprimitive actions whose blocks have size 22. Then, we apply results on involutive graphs to compute the exact value of these invariants for hypercubes and even cycles. Finally, we study odd cycles, for which we are able to compute the exact value when their order is not prime. In the prime order case, we give an upper bound of 33

    Improved bounds on the multicolor Ramsey numbers of paths and even cycles

    Full text link
    We study the multicolor Ramsey numbers for paths and even cycles, Rk(Pn)R_k(P_n) and Rk(Cn)R_k(C_n), which are the smallest integers NN such that every coloring of the complete graph KNK_N has a monochromatic copy of PnP_n or CnC_n respectively. For a long time, Rk(Pn)R_k(P_n) has only been known to lie between (k−1+o(1))n(k-1+o(1))n and (k+o(1))n(k + o(1))n. A recent breakthrough by S\'ark\"ozy and later improvement by Davies, Jenssen and Roberts give an upper bound of (k−14+o(1))n(k - \frac{1}{4} + o(1))n. We improve the upper bound to (k−12+o(1))n(k - \frac{1}{2}+ o(1))n. Our approach uses structural insights in connected graphs without a large matching. These insights may be of independent interest
    • …
    corecore