6 research outputs found

    Parameterized Intractability of Even Set and Shortest Vector Problem from Gap-ETH

    Get PDF
    The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over F_2, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k. Here, k is the parameter of the problem. The question of whether k-Even Set is fixed parameter tractable (FPT) has been repeatedly raised in literature and has earned its place in Downey and Fellows\u27 book (2013) as one of the "most infamous" open problems in the field of Parameterized Complexity. In this work, we show that k-Even Set does not admit FPT algorithms under the (randomized) Gap Exponential Time Hypothesis (Gap-ETH) [Dinur\u2716, Manurangsi-Raghavendra\u2716]. In fact, our result rules out not only exact FPT algorithms, but also any constant factor FPT approximation algorithms for the problem. Furthermore, our result holds even under the following weaker assumption, which is also known as the Parameterized Inapproximability Hypothesis (PIH) [Lokshtanov et al.\u2717]: no (randomized) FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only 0.99-satisfiable (where the parameter is the number of variables). We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are given a lattice whose basis vectors are integral and an integer k, and the goal is to determine whether the norm of the shortest vector (in the l_p norm for some fixed p) is at most k. Similar to k-Even Set, this problem is also a long-standing open problem in the field of Parameterized Complexity. We show that, for any p > 1, k-SVP is hard to approximate (in FPT time) to some constant factor, assuming PIH. Furthermore, for the case of p = 2, the inapproximability factor can be amplified to any constant

    Parameterized complexity and approximability of directed odd cycle transversal

    Get PDF
    A directed odd cycle transversal of a directed graph (digraph) D is a vertex set S that intersects every odd directed cycle of D. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph D and an integer k. The objective is to determine whether there exists a directed odd cycle transversal of D of size at most k. In this paper, we settle the parameterized complexity of DOCT when parameterized by the solution size k by showing that DOCT does not admit an algorithm with running time f(k)nO(1) unless FPT = W[1]. On the positive side, we give a factor 2 fixed-parameter approximation (FPT approximation) algorithm for the problem. More precisely our algorithm takes as input D and k, runs in time 2O(k)nO(1), and either concludes that D does not have a directed odd cycle transversal of size at most k, or produces a solution of size at most 2k. Finally assuming gap-ETH, we show that there exists an ϵ > 0 such that DOCT does not admit a factor (1 + ϵ) FPT-approximation algorithm

    Covering Small Independent Sets and Separators with Applications to Parameterized Algorithms

    Full text link
    We present two new combinatorial tools for the design of parameterized algorithms. The first is a simple linear time randomized algorithm that given as input a dd-degenerate graph GG and an integer kk, outputs an independent set YY, such that for every independent set XX in GG of size at most kk, the probability that XX is a subset of YY is at least (((d+1)kk)⋅k(d+1))−1\left({(d+1)k \choose k} \cdot k(d+1)\right)^{-1}.The second is a new (deterministic) polynomial time graph sparsification procedure that given a graph GG, a set T={{s1,t1},{s2,t2},…,{sℓ,tℓ}}T = \{\{s_1, t_1\}, \{s_2, t_2\}, \ldots, \{s_\ell, t_\ell\}\} of terminal pairs and an integer kk, returns an induced subgraph G⋆G^\star of GG that maintains all the inclusion minimal multicuts of GG of size at most kk, and does not contain any (k+2)(k+2)-vertex connected set of size 2O(k)2^{{\cal O}(k)}. In particular, G⋆G^\star excludes a clique of size 2O(k)2^{{\cal O}(k)} as a topological minor. Put together, our new tools yield new randomized fixed parameter tractable (FPT) algorithms for Stable ss-tt Separator, Stable Odd Cycle Transversal and Stable Multicut on general graphs, and for Stable Directed Feedback Vertex Set on dd-degenerate graphs, resolving two problems left open by Marx et al. [ACM Transactions on Algorithms, 2013]. All of our algorithms can be derandomized at the cost of a small overhead in the running time.Comment: 35 page

    Parameterized Intractability of Even Set and Shortest Vector Problem

    Get PDF
    The -Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over , which can be stated as follows: given a generator matrix and an integer , determine whether the code generated by has distance at most , or, in other words, whether there is a nonzero vector such that has at most nonzero coordinates. The question of whether -Even Set is fixed parameter tractable (FPT) parameterized by the distance has been repeatedly raised in the literature; in fact, it is one of the few remaining open questions from the seminal book of Downey and Fellows [1999]. In this work, we show that -Even Set is W[1]-hard under randomized reductions. We also consider the parameterized -Shortest Vector Problem (SVP), in which we are given a lattice whose basis vectors are integral and an integer , and the goal is to determine whether the norm of the shortest vector (in the norm for some fixed ) is at most . Similar to -Even Set, understanding the complexity of this problem is also a long-standing open question in the field of Parameterized Complexity. We show that, for any , -SVP is W[1]-hard to approximate (under randomized reductions) to some constant factor

    Linear Orderings of Sparse Graphs

    Get PDF
    The Linear Ordering problem consists in finding a total ordering of the vertices of a directed graph such that the number of backward arcs, i.e., arcs whose heads precede their tails in the ordering, is minimized. A minimum set of backward arcs corresponds to an optimal solution to the equivalent Feedback Arc Set problem and forms a minimum Cycle Cover. Linear Ordering and Feedback Arc Set are classic NP-hard optimization problems and have a wide range of applications. Whereas both problems have been studied intensively on dense graphs and tournaments, not much is known about their structure and properties on sparser graphs. There are also only few approximative algorithms that give performance guarantees especially for graphs with bounded vertex degree. This thesis fills this gap in multiple respects: We establish necessary conditions for a linear ordering (and thereby also for a feedback arc set) to be optimal, which provide new and fine-grained insights into the combinatorial structure of the problem. From these, we derive a framework for polynomial-time algorithms that construct linear orderings which adhere to one or more of these conditions. The analysis of the linear orderings produced by these algorithms is especially tailored to graphs with bounded vertex degrees of three and four and improves on previously known upper bounds. Furthermore, the set of necessary conditions is used to implement exact and fast algorithms for the Linear Ordering problem on sparse graphs. In an experimental evaluation, we finally show that the property-enforcing algorithms produce linear orderings that are very close to the optimum and that the exact representative delivers solutions in a timely manner also in practice. As an additional benefit, our results can be applied to the Acyclic Subgraph problem, which is the complementary problem to Feedback Arc Set, and provide insights into the dual problem of Feedback Arc Set, the Arc-Disjoint Cycles problem
    corecore