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Parameterized Complexity and Approximability of Directed Odd Cycle
Transversal

Daniel Lokshtanov∗ M. S. Ramanujan† Saket Saurabh‡§ Meirav Zehavi¶

Abstract

A directed odd cycle transversal of a directed graph
(digraph) D is a vertex set S that intersects every odd
directed cycle of D. In the Directed Odd Cycle
Transversal (DOCT) problem, the input consists
of a digraph D and an integer k. The objective is
to determine whether there exists a directed odd cycle
transversal of D of size at most k. In this paper, we
settle the parameterized complexity of DOCT when
parameterized by the solution size k by showing that
DOCT does not admit an algorithm with running
time f(k)nO(1) unless FPT = W[1]. On the positive
side, we give a factor 2 fixed-parameter approximation
(FPT approximation) algorithm for the problem. More
precisely, our algorithm takes as input D and k, runs
in time 2O(k2)nO(1), and either concludes that D does
not have a directed odd cycle transversal of size at most
k, or produces a solution of size at most 2k. Finally,
assuming gap-ETH, we show that there exists an ε > 0
such that DOCT does not admit a factor (1 + ε) FPT-
approximation algorithm.

1 Introduction

A directed odd cycle transversal of a digraph D is a set
S of vertices of D such that deleting S from D results
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in a graph without any directed odd cycles. In the
NP-complete Directed Odd Cycle Transversal
(DOCT) problem, the input consists of a digraph D on
n vertices and an integer k, and the task is to determine
whether D has a directed odd cycle transversal of size
at most k.

DOCT generalizes several well studied problems
such as Odd Cycle Transversal (OCT) on undi-
rected graphs [1, 14, 28, 45], Directed Feedback
Vertex Set (DFVS) [8, 21, 23, 27], and Directed
Subset Feedback Vertex Set [12, 21]. In OCT,
the input consists of an undirected graph G and integer
k, and the task is to determine whether there exists a
subset S of vertices such that G−S is bipartite. Notice
that OCT reduces to DOCT by replacing every edge
by two arcs, one in each direction. In DFVS, the input
consists of a digraph D and integer k, and the task is
to determine whether there exists a subset S of vertices
such that D−S is a directed acyclic graph. Notice that
DFVS reduces to DOCT by adding for every arc uv of
D a new vertex x as well as the arcs ux and xv.

The existence of fixed-parameter algorithms (FPT
algorithms) for OCT and DFVS were considered to be
major open problems in parameterized complexity, until
FPT algorithms were found for OCT in 2003 by Reed
et al. [45], and for DFVS in 2007 by Chen et al. [8].
The algorithms for these two problems have had signifi-
cant influence on the development of the field, resulting
in proliferation of techniques such as iterative compres-
sion (OCT) and important separators [15, 20] (DFVS).
Today both algorithms and corresponding methods are
considered fundamental textbook material [15].

Once both OCT and DFVS were shown to be FPT,
DOCT immediately became the next natural target.
The parameterized complexity of DOCT was explicitly
stated as an open problem [17] for the first time in
2007, immediately after the announcement of an FPT
algorithm for DFVS. Since then the problem has been
re-stated several times [9, 11, 39, 40]. In this paper,
we settle the parameterized complexity of DOCT, by
showing that the problem is W[1]-hard. Our hardness
proof also gives a near-tight running time lower bound
for DOCT assuming the Exponential Time Hypothesis



(ETH). In particular, we prove the following.

Theorem 1.1. DOCT is W[1]-hard. Furthermore,
assuming the ETH there is no algorithm for DOCT with
running time f(k)no(k/ log k).

On the one hand, Theorem 1.1 shows that DOCT is
intractable from the perspective of parameterized com-
plexity. On the other hand, the problem is known not to
admit a constant factor approximation algorithm run-
ning in polynomial time, assuming the Unique Games
Conjecture [28]. Hence, the next natural question is
whether one could get a constant factor approximation
algorithm in FPT time. Our second result is an affirma-
tive answer to this question.

Theorem 1.2. There is a 2O(k2)nO(1)-time FPT-
approximation algorithm for DOCT with approxima-
tion ratio 2.

In light of Theorem 1.2 the next natural question
is whether the approximation factor can be made arbi-
trarily close to 1. Our final contribution is to provide
evidence that there exists an ε > 0 such that DOCT
does not admit a (1 + ε) FPT-approximation algorithm.
In particular, the proof of Theorem 1.1 can be thought
of as a parameterized reduction from the Binary Con-
straint Satisfaction (BCSP) problem, informally
defined as follows. The input consists of two integers n
and k specifying that there are k variables, x1, . . . , xk,
each variable xi taking a value from {1, . . . , n}, together
with a list of constraints. Each constraint specifies two
variables, xi and xj , together with a list L of all legal
pairs of values that xi and xj may take simultaneously.
An assignment of values to the variables satisfies the
constraint if (xi, xj) ∈ L. The task is to find an assign-
ment that satisfies all constraints. It is well known (see
e.g. [38]) that BCSP parameterized by the number of
variables k is W[1]-complete. We conjecture that not
only is it W[1]-hard to find a satisfying assignment to a
BCSP instance if there is one, but it is also W[1]-hard
to distinguish between instances that have a satisfying
assignment from instances where every assignment vio-
lates at least an ε fraction of the constraints. Formally,
for every ε > 0, we define the promise problem ε-gap-
BCSP, as BCSP where the input instance is promised
to either be satisfiable, or has the property that every
assignment violates at least an ε fraction of the con-
straints. The task is to determine whether the input
instance is satisfiable or not.

Hypothesis 1. (Parameterized Inapproximabil-
ity Hypothesis (PIH)) There exists an ε > 0 such
that ε-gap-BCSP is W[1]-hard.

PIH is related to the recently introduced Gap-
Exponential Time Hypothesis (Gap-ETH) [19, 36],
which is a stronger version of the well-known Exponen-
tial Time Hypothesis [24, 25]. Moreover, Gap-ETH has
been instrumental in establishing several parameterized
inapproximability results in recent years [6, 5, 10].

We remark that for purposes of showing hardness
of approximation results starting from Gap-ETH, we
could just as well have conjectured that there exists an
ε > 0 such that there is no f(k)nO(1) time algorithm
for ε-gap-BCSP. This is because (see Section 4.2 for
a simple proof) assuming Gap-ETH, there exists an
ε > 0 such that there is no f(k)nO(1) time algorithm
for ε-gap-BCSP 1. Thus, (essentially) any hardness
of approximation result assuming PIH can be shown
assuming Gap-ETH instead. In addition, the recent
result of Bhattacharya et al. [5] on the parameterized
inapproximability of the famous Even Set problem
is based on this assumption which is slightly weaker
than that in the statement of PIH above. However,
we strongly believe that PIH is true as stated—indeed,
we should hardly claim this conjecture as our own, as
quite a few researchers in parameterized complexity
have stated this conjecture as a natural formulation
of a PCP-theorem in the context of parameterized
inapproximability.

Our final result is that assuming either PIH or Gap-
ETH, there exists an ε > 0 such that DOCT does not
admit an FPT-approximation algorithm with ratio 1+ε.

Theorem 1.3. Assuming Gap-ETH or PIH and FPT
6= W[1], there exists an ε > 0 such that DOCT
does not admit an FPT-approximation algorithm with
approximation ratio 1 + ε.

Arc-Directed Odd Cycle Transversal. We remark
that easy reductions transfer all of our results to Arc-
DOCT, the “arc” version of DOCT where the goal is
to remove at most k arcs such that the resulting graph
does not have any directed odd cycles. To transfer the
hardness results we need to reduce DOCT to Arc-
DOCT. For this purpose, it is sufficient to subdivide
every arc, and then split every original vertex u of the
input digraph into two vertices, uin and uout, such that
all arcs leading into u lead into uin instead, all arcs
leading out of u lead out of uout instead, and adding
the arc uinuout. To transfer the algorithmic results from
DOCT to Arc-DOCT, we need to reduce Arc-DOCT
to DOCT. This is achieved by subdividing every arc
twice, and then making each original vertex undeletable
by adding k + 1 copies of it.

1Bhattacharya et al. have also included a proof of this

statement in [4].



We now outline our methodology.
W[1]-hardness. The starting point for both our hard-
ness results as well as our approximation algorithm is
a failed attempt at obtaining an FPT algorithm. The
root of this attempt was the FPT algorithm for DFVS
by Chen et al. [8] (see also the textbook [15] for a more
gentle exposition). The key concept in this algorithm is
the notion of important separators, defined by Marx [37].
Given a digraph D and two vertices u and v, a u-v-
separator is a vertex set S ⊆ V (D) \ {u, v} such that
there is no directed path from u to v in D − S. A
u-v-separator S is called a minimal u-v-separator if no
proper subset of S is also a u-v-separator.

Given a vertex set S such that u is not in S, we
define the reach of u in D − S as the set RD(u, S)
of vertices reachable from u by a directed path in
D − S. We can now define a partial order on the set of
minimal u-v separators as follows. Given two minimal
u-v separators S1 and S2, we say that S1 is “at least as
good as” S2 if |S1| ≤ |S2| and RD(u, S2) ⊆ RD(u, S1).
In plain words, S1 “costs no more” than S2 in terms
of the number of vertices deleted, and S1 “is pushed
further towards v” than S2. A minimal u-v separator S
is an important u-v-separator if no other minimal u-v-
separators is at least as good as S. The key insight
behind the algorithm for DFVS by Chen et al. [8],
as well as algorithms for several other parameterized
problems [13, 12, 16, 29, 30, 33, 35, 34, 41], is that for
every k, the number of important u-v-separators of size
at most k is at most 4k [7]. We refer the reader to
the textbook by Cygan et al. [15] for a more thorough
exposition of important separators.

Applying the initial steps of the DFVS algorithm
to DOCT (i.e. the methods of iterative compression,
and guessing an order on an undeletable solution),
one naturally arrives at an extension of the notion of
important separators. Let us define the cleaning cost of
a minimal u-v separator S as doct(D[RD(u, S)]), where
doct(D) is the minimum size of a directed odd cycle
transversal of D. Then, we define a new partial order
on minimal u-v separators. Here, given two minimal
u-v separators S1 and S2, we say that S1 is “at least
as good as” S2 if |S1| ≤ |S2|, RD(u, S2) ⊆ RD(u, S1),
and the cleaning cost of S1 is at most the cleaning cost
of S2. In other words, S1 costs no more than S2, S1 is
pushed further towards v than S2, and “cleaning up” the
reach of u in G − S1 does not cost more than cleaning
up the reach of u in G − S2. We say that a minimal
u-v separator S is a DOCT-important u-v-separator if
no minimal u-v-separators other than S are at least as
good as S with respect to this new partial order.

For every digraph D, vertices u and v and integer
k, we know that there are at most 4k important u-

v separators of size at most k. For the purposes of
an FPT algorithm for DOCT, the pivotal question
becomes whether the number of DOCT-important u-
v-separators of size at most k1 and cleaning cost at
most k2 can be upper bounded by a function of k1
and k2 only, or if there exist families of graphs where
the number of DOCT-important u-v-separators of size
at most k1 and cleaning cost at most k2 grows with
the size of the graphs. Indeed, a constructive upper
bound on f(k1, k2), the number of DOCT-important u-
v-separators of size at most k1 and cleaning cost at most
k2, would have implied an FPT algorithm for DOCT.

We managed to prove that there exists a function
f such that the number of DOCT-important u-v-
separators of size at most k and cleaning cost 0 is at
most f(k). In a subsequent attempt to similarly upper
bound the number of DOCT-important u-v-separators
of size at most k and cleaning cost 1, we discovered the
clock gadgets (see Section 3.2), which are graphs where
the number of DOCT-important u-v-separators of size
at most 2 and cleaning cost 1 is Ω(n).

A clock gadget essentially permits us to encode (in
the language of DOCT) the choice of one element out of
a domain of size n, without it being clear a priori which
element(s) should be the best one(s) to select. For many
problems, once one has such a selection gadget it is easy
to prove W[1]-hardness by reducing from BCSP (or,
equivalently, from Multicolored Clique). However,
we were able to show that on graphs consisting only
of clock gadgets glued together in the most natural
way, DOCT is in fact FPT2. In particular, clocks do
not provide a general way of synchronizing the choices
of different elements, making it difficult to encode the
constraints of BCSP using DOCT. We were able to
engineer such a synchronization gadget by a non-trivial
modification of the “grid gadget” used by Pilipczuk and
Wahlström [43] to show W[1]-hardness of Directed
Multicut with four terminal pairs. At this point one
can complete a reduction from BCSP using clocks to
encode the selection of a value for each variable and
using synchronization gadgets to encode the constraints
of the BCSP instance.

FPT-Approximation. The hardness of DOCT comes
from the fact that DOCT-important u-v-separators
have to do two jobs at the same time. First, they need to
disconnect v from u, and second they need to clean the
reach of u from directed odd cycles. Our approximation
algorithm works by delegating the two jobs to different
solutions, and solving each of the jobs separately and
optimally.

2Because this is such a specialized graph class, we did not
include a proof of this fact in the paper.



Just like our W[1]-hardness proof, our FPT-
approximation for DOCT builds on the algorithm of
Chen et al. [8] for DFVS. The method of iterative com-
pression (see [15, 20]) allows us to reduce the original
problem to the setting where we are given a digraph D,
an integer k, and a directed odd cycle transversal Ŝ of
size 2k+ 1. The task is to either determine that D does
not have a directed odd cycle transversal of size at most
k, or output a directed odd cycle transversal of size at
most 2k. We now proceed with a sketch of how to solve
this task in FPT time.

In order to witness that a digraph D has no directed
odd cycles it is sufficient to partition the vertex set of
D into sets Z1, Z2, . . . , Z` such that (a) no arc goes
from Zi to Zj with j < i and (b) for every i ≤ `
the underlying undirected graph of D[Zi] is bipartite.
To certify (b) it is sufficient to provide a coloring of
all vertices in D with black or white, such that every
arc with both endpoints in Zi for some i has different
colored endpoints. The sets Z1, Z2, . . . , Z` can always
be chosen to be the strongly connected components of
D, and in this case the ordering Z1, Z2, . . . , Z` can be
any topological ordering of the directed acyclic graph
obtained from D by collapsing every strongly connected
component to a vertex.

Suppose now that D has a directed odd cycle
transversal S of size at most k. Let Z1, Z2, . . . , Z` be an
ordered partitioning of V (D − S) and φ : V (D − S) →
{black, white} be a coloring that certifies that D − S
does not have directed odd cycles. At the cost of a
3k overhead in the running time we can guess for each
vertex v ∈ Ŝ whether it is deleted (i.e put in the directed
odd cycle transversal), colored black or colored white.
At the cost of an additional k! overhead in the running
time we can guess for every pair of vertices u, v in
Ŝ whether they occur in the same strongly connected
component Zi, and if not, which of the two strongly
connected components containing u and v respectively
occurs first in the ordering Z1, Z2, . . . , Z`. Applying
these guesses together with some simple reduction rules,
we end up in the following setting. The input is a
digraph D, an integer k and a set Ŝ such that D − Ŝ
contains no directed odd cycles, and D[Ŝ] is an acyclic
tournament (that is, there is an arc between every
pair of vertices in S). The task is to either find a set
S ⊆ V (D) \ Ŝ of size at most 2k such that (a) S is
a directed odd cycle transversal, and (b) no strongly
connected component of D− S contains more than one
vertex of Ŝ, or to conclude that no such set of size at
most k exists.

A set S that only satisfies (b) is called a skew sepa-
rator for Ŝ, and the main subroutine in the algorithm of
Chen et al. [8] for DFVS is an algorithm that given D, Ŝ

and k, runs in time O(4kkO(1)(n+m)), and finds a skew
separator S for Ŝ of size at most k if such a skew sep-
arator exists. Our approximation algorithm runs this
subroutine and either finds a skew separator S of size
at most k, or concludes that no set of size at most k
can satisfy both (a) and (b) (since there is no such
set that satisfies just (b)). It then determines in time

2O(k2)nO(1) whether D − S has a directed odd cycle
transversal of size at most k disjoint from Ŝ. If such a
set S∗ exists, then the algorithm outputs S∪S∗ as a so-
lution of size at most 2k that satisfies (a) and (b). If no
such directed odd cycle transversal S∗ exists, then the
approximation algorithm concludes that no set of size
at most k can satisfy both (a) and (b) (since there is no
such set that satisfies just (a) in a subgraph of D). All
that remains is to describe the algorithm for finding in
time 2O(k2)nO(1) a directed odd cycle transversal S∗ of
size at most k disjoint from Ŝ in D− S, or determining
that such a set does not exist.

At this point we observe that the problem breaks
up into independent sub-problems for each strongly con-
nected component of D − S. For each such component
C we have that |C ∩ Ŝ| ≤ 1, because S is a skew sepa-
rator for Ŝ. Since Ŝ is a directed odd cycle transversal
for D, if C ∩ Ŝ = ∅ then there can be no directed odd
cycles in D[C]. Hence we concentrate on the case when
C ∩ Ŝ = {w} for a vertex w. In other words, we are
down to the case where the input is a digraph D, inte-
ger k and a vertex w such that {w} is a directed odd
cycle transversal for D. The task is to find a directed
odd cycle transversal S∗ of D of size at most k with
w /∈ S∗.

Define the shadow of S∗ to be the set of all ver-
tices of D − S∗ that are not in the strongly connected
component of D − S∗ containing w. Using the tech-
nique of shadow removal, introduced by Marx and Raz-
gon [41] (see also [13, 12, 11]) in their FPT algorithm
for Multicut, we can reduce the problem to the spe-
cial case where the shadow of S∗ is empty, at the cost
of a 2O(k2)nO(1) overhead in the running time. In this
special case D−S∗ is strongly connected, and therefore
the underlying undirected graph of D− S∗ is bipartite.
Thus, S∗ is an undirected odd cycle transversal for the
underlying undirected graph of D. Here we can apply
any one of the numerous FPT algorithms [26, 31, 44, 45]
for OCT. Thus we can find optimal directed odd cycle
transversals in FPT time for the case when a single un-
deletable vertex is a directed odd cycle transversal, and
as discussed above, this is sufficient to complete the fac-
tor 2 FPT-approximation.

As a subroutine of our FPT-approximation we gave
an FPT algorithm for DOCT for the special case where
an undeletable directed odd cycle transversal of size 1



is given as input. Our hardness result also holds for the
case where an undeletable directed odd cycle transversal
of size 3 is given as input (the vertices {x, y, z} in the
construction). Therefore, the parameterized complexity
of the case when one also has an undeletable directed
odd cycle transversal of size 2 in the input, is an
interesting open problem. It is conceivable that an FPT
algorithm for this case could help in obtaining an FPT-
approximation for DOCT with a factor better than 2.

FPT-Inapproximability. For every ε > 0 there exists
a δ > 0 such that our first reduction, which proves the
W[1]-hardness of DOCT, also translates the hardness
of ε-gap-BCSP into hardness of distinguishing between
digraphsD such that doct(D) ≤ k from digraphsD such
that doct(D) > k(1 + δ). However, the reduction only
works if in the instance of ε-gap-BCSP every variable
occurs in at most three constraints. To complete the
proof of the parameterized inapproximability of DOCT,
we need to reduce ε-gap-BCSP to this special case. We
achieve this by replacing every “high degree” variable
by a group of independent low degree variables, while
ensuring that the low degree variables all get the same
value by introducing a constant degree expander of
equality constraints between them.

2 Preliminaries

We use the notations [t] and [t]0 as shorthands of
{1, 2, . . . , t} and {0, 1, . . . , t}, respectively. Given a
function f : A → R and a subset A′ ⊆ A, denote
f(A′) =

∑
a∈A′ f(a).

Parameterized Complexity. Formally, a parameteriza-
tion of a problem is the assignment of an integer k to
each input instance. Here, the goal is to confine the
combinatorial explosion in the running time of an al-
gorithm for Π to depend only on k. We say that a
parameterized problem Π is fixed-parameter tractable
(FPT) if there exists an algorithm that solves Π in time
f(k) · |I|O(1), where |I| is the size of the input instance
and f is an arbitrary computable function depending
only on the parameter k.

On the negative side, parameterized complexity also
provides methods to show that a problem is unlikely to
be FPT. The main technique is that of parameterized
reductions analogous to those employed in classical
complexity. Here, the concept of W[1]-hardness replaces
that of NP-hardness, and we need not only construct
an equivalent instance in FPT time, but also ensure
that the size of the parameter in the new instance
depends only on the size of the parameter in the original
instance. For our purposes, it is sufficient to note that
if there exists such a reduction transforming a problem
known to be W[1]-hard to another problem Π, then

the problem Π is W[1]-hard as well. Central W[1]-
hard-problems include, for example, the problem of
deciding whether a nondeterministic single-tape Turing
machine accepts within k steps, the Clique problem
parameterized be solution size, and the Independent
Set problem parameterized by solution size

In the context of a parameterized minimization
problem Π, we say that an algorithm for Π is an α-
approximation algorithm if it always outputs a solution
of size at most αk when there exists a solution of size
at most k (in other words, the input instance is a yes-
instance), and it always outputs No when there does
not not exist a solution of size at most αk. Additional
details can be found in the monographs [22, 42, 20, 15].

Digraphs. We refer to standard terminology from the
book of Diestel [18] for those graph-related terms that
are not explicitly defined here. We say that X is a
minimal directed odd cycle transversal of D if no proper
subset of D is also a directed odd cycle transversal
of D. Finally, we call X a minimum directed odd
cycle transversal of D if there is no directed odd cycle
transversal of D whose size is strictly smaller than the
size of X. In the context of DOCT, we use the terms
solution and α-approximate solution to refer to directed
odd cycle transversals of sizes at most k and at most
αk, respectively.

Given a vertex set X ⊆ V (D), we let D[X] denote
the subgraph of D induced by X, and we define D\X =
D[V (D) \X]. Given an arc (u, v) ∈ A(D), we refer to
u as the tail of the arc and to v as the head of the arc.
Given a vertex set X ⊆ V (G), we use N+(X) to denote
the set of out-neighbors of X and N−(X) to denote
the set of in-neighbors of X. We use N i[X] to denote
the set X ∪ N i(X) where i ∈ {+,−}. We denote by
A[X] the subset of edges in A(D) with both endpoints
in X. A strongly connected component of D is a maximal
subgraph in which every vertex has a directed path to
every other vertex. We say that a strongly connected
component is non-trivial if it consists of at least two
vertices and trivial otherwise. For disjoint vertex sets
X and Y , the set Y is said to be reachable from X if
for every vertex y ∈ Y , there exists a vertex x ∈ X
such that the D contains a directed path from x to y.
For disjoint subsets X,Y, Z ⊆ V (D), we call Z an X-Y
separator if there is no path from a vertex of X to a
vertex of Y in D − Z. Our proofs rely on the following
well-known proposition (see, e.g., [3]).

Proposition 2.1. (Folklore) Let D be a strongly
connected directed graph that does not contain a directed
odd cycle. Then, the underlying undirected graph of D
is a bipartite graph.



3 W[1]-Hardness

In this section, we resolve the question of the parame-
terized complexity of DOCT. More precisely, we prove
Theorem 1.1.

The source of our reduction is the Partitioned
Subgraph Isomorphism (PSI) problem. The defi-
nition of this problem relies on the notion of a col-
orful mapping. Given undirected graphs H and G
where G has maximum degree 3, and a coloring func-
tion col : V (H) → V (G), we say that an injective
function ϕ : V (G′) → V (H) is a colorful mapping of
G′ into H, where G′ is a subgraph of G, if for every
v ∈ V (G′), col(ϕ(v)) = v, and for every {u, v} ∈ E(G′),
{ϕ(u), ϕ(v)} ∈ E(H). Formally, the PSI problem is
defined as follows. This input is a pair of undirected
graphs H and G, and a coloring function col : V (H)→
V (G). The maximum degree of a vertex of G is 3. The
goal is to decide whether there exists a colorful mapping
of G into H?

While the PSI problem requires us to map the
entire graph G, to prove our inapproximability result
we would also be interested in colorful mappings of
subgraphs of G. In the context of the PSI problem,
we rely on a well-known proposition due to Marx [38],
where the same problem is called Colored Subgraph
Isomorphism.

Proposition 3.1. (Corollary 6.3, [38]) The PSI
problem is W[1]-hard. Moreover, unless ETH fails, PSI

cannot be solved in time f(k)no(
k

log k ) for any function
f where k = |E(G)|. Here, n = |V (H)|.

We anticipate that the components introduced by
our proof will be useful for other reductions that aim
to establish the W[1]-hardness of problems involving
parities and/or cuts. Hence, we have structured our
proof as follows. First, for the sake of clarity of the
proof, we integrate arc and vertex annotations into the
definition of DOCT. Then, we introduce the concept of
a clock, which is a gadget that lies at the heart of our
reduction. This gadget captures the power of parities
in a compact, easy-to-use manner. In particular, it
elegantly encodes the selection of two (not necessarily
distinct) indices from a set [n] whose sum is upper
bounded by n+1 (in the case of a forward clock) or lower
bounded by n + 1 (in the case of a reverse clock). We
remark that the selection is orchestrated by a variable
that we call time. Next, we “glue” the tips of the hands
of a forward clock and a reverse clock together as well
as attach arcs that connect carefully chosen vertices on
these hands to obtain a double clock. The double clock
is a gadget that both ensures that two clocks show
the exact same time and that this time corresponds
to the selection of two indices whose sum is exactly

n + 1. Roughly speaking, it is mentally convenient to
associate each double clock with a different time zone
that encodes the selection of one element. Here, since
our source problem is a graph problem, the natural
choice of an element is a vertex. Having established
a time zone for each selection of one element, we turn
to synchronize hands of different double clocks. For
this purpose, we introduce the synchronizer, which is
a gadget that resembles a folded grid. We remark that
this specific gadget is different yet inspired by a folded
grid gadget that is the core of the paper [43]. Having
double clocks and synchronizers at hand, we are finally
able to present the entire reduction in an intuitive (yet
precise) manner. Lastly, we prove that our reduction
is correct. At this point, having already established
key properties of our gadgets, the reverse direction
(“solution to DOCT → solution to PSI”) is simple.
For the forward direction (“solution to PSI → solution
to DOCT”) we exhibit a partition of the vertex set of
the output digraph into pairwise-disjoint sets on which
we can define a topological order, such that the graph
induced by each set can be shown to exclude directed
odd cycles.

3.1 Annotations Let us begin our proof by integrat-
ing arc and vertex annotations into the definition of
DOCT. More precisely, we generalize DOCT as fol-
lows.

In the Annotated DOCT (A-DOCT) problem,
we are given a digraph D, a non-negative integer k,
a labeling function ` : A(D) → {0, 1}, and a weight
function w : V (D) → [2k + 1]. The goal is to decide
whether there exists a subset X ⊆ V (D) such that
w(X) ≤ k and X intersects every directed cycle C of
D where `(E(C)) is odd.

Henceforth, in the context of A-DOCT, the term
directed odd cycle would refer to a directed cycle such
that `(E(C)) is odd. As we show in this section, it is
easy to see that in order to prove Theorems 1.1 and 1.3,
we can focus on the A-DOCT problem.

Let us now present our reduction from A-DOCT
to DOCT. For this purpose, let (D, k, `, w) be an
instance of A-DOCT. Then, we construct an instance
red(D, k, `, w) = (D′, k′) of DOCT as follows. First,
set k′ = k. Let A0 = {a ∈ A(D) : `(a) = 0}
and A1 = {a ∈ A(D) : `(a) = 1}. Next, define
V (D′) = P ∪ Q, where P = {pia : i ∈ [αk + 1], a ∈ A0}
and Q = {qiv : i ∈ [w(v)], v ∈ V (D)}. Finally, we define
A(D′) = S ∪ T ∪ R, where S = {(qiv, pja) : qiv ∈ Q, pja ∈
P, v is the tail of a}, T = {(pia, qjv) : pia ∈ P, qjv ∈ Q, v is
the head of a} and R = {(qiu, qjv) : (u, v) ∈ A1}. Clearly,
(D′, k′) can be computed in polynomial time. Notice
that this reduction corresponds to first subdividing arcs
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Figure 1: The face of a forward clock. Nodes
that have the same shape serve a similar
purpose. In particular, some vertices are
represented by lines to emphasize that we
would sometimes like to delete these vertices,
which corresponds to “cutting” the cycle (or
path) at this position. The colors distinguish
between different types of nodes; red vertices
are called ri, blue vertices are called bi, etc.

in A0 once each, then replacing every original vertex
with its weight-many copies, and finally replacing every
new vertex with αk + 1 copies.

Lemma 3.1. Let (D, k, `, w) be an instance of A-
DOCT. If there exists a solution for (D, k, `, w), then
there exists a solution for red(D, k, `, w) = (D′, k′).
Moreover, if there exists an α-approximate solution for
(D′, k′), then there exists an α-approximate solution for
(D, k, `, w).

As a corollary to Lemma 3.1, we derive the following
result.

Corollary 3.1. For every α ≥ 1, if there exists an α-
approximation algorithm for DOCT that runs in time
τ , then there exists an α-approximation algorithm for
A-DOCT that runs in time O(τ + nO(1)).

3.2 The Basic Clock Gadget Let n, k ∈ N such
that k ≥ 100. Here, we define an (n, k)-forward clock
and an (n, k)-reverse clock. Since n and k would be clear
from context, we simply write forward clock and reverse
clock rather than (n, k)-forward clock and (n, k)-reverse
clock, respectively.

3.2.1 Forward Clock Structure. We first define a
forward clock C. The face of C is an “undirected”
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Figure 2: The hands of a forward clock together with
the 4 arcs used to attach them. For all i ∈ [n],
pre(pi) = ri−1 and post(pi) = ri, and pre(ai) = bi−1
and post(ai) = bi.

cycle, in the sense that consecutive vertices have arcs
in both directions. The vertex set of C is the union of
four pairwise-disjoint sets R̂ (red), B̂ (blue), T̂ (time)
and {x}. We refer the reader to Fig. 1. We set

R̂ = {r̂i : i ∈ [n]0}, B̂ = {b̂i : i ∈ [n]0} and

T̂ = {t̂i,n−i−1 : i ∈ [n − 1]0}. The arc set of the face is
the union of the following three pairwise-disjoint sets.

• {(x, r̂n), (x, b̂n), (r̂n, x), (̂bn, x)}.

• {(̂bi, r̂n−i) : i ∈ [n]0} ∪ {(r̂n−i, b̂i) : i ∈ [n]0}.

• {(r̂i, t̂i,n−i−1) : i ∈ [n − 1]0} ∪ {(̂bn−i−1, t̂i,n−i−1) :
i ∈ [n − 1]0} ∪ {(t̂i,n−i−1, r̂i) : i ∈ [n − 1]0} ∪
{(t̂i,n−i−1, b̂n−i−1) : i ∈ [n− 1]0}.

The hands of C are two directed paths, red and blue
(see Fig. 2). The vertex set of the red path is the union
of two pairwise disjoint sets, R = {ri : i ∈ [n]0} (red)
and P = {pi : i ∈ [n]} (pink). For all i ∈ [n], we denote
pre(pi) = ri−1 and post(pi) = ri. The arc set of the
red path is {(pre(pi), pi) : i ∈ [n]} ∪ {(pi,post(pi)) : i ∈
[n]}. Symmetrically, the blue path is the union of two
pairwise disjoint sets, B = {bi : i ∈ [n]0} (blue) and
A = {ai : i ∈ [n]} (azure). For all i ∈ [n], we denote
pre(ai) = bi−1 and post(ai) = bi. The arc set of the blue
path is {(pre(ai), ai) : i ∈ [n]}∪{(ai,post(ai)) : i ∈ [n]}.

The hands are attached to the face as follows (see
Fig. 3). First, we add the arcs (x, r0) and (x, b0).
Second, for all i ∈ [n]0, we add the arcs (ri, r̂i) and

(bi, b̂i). Then, we “glue” the hands by adding a new
vertex, y, and the arcs (rn, y), (bn, y) and (y, x).

Finally, let us annotate C (see Fig. 3). The labels

of the arcs in the set {(x, r̂n), (r̂n, x), (y, x)} ∪ {(bi, b̂i) :
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Figure 3: A forward clock. The arcs labeled 1 are
marked by a green ‘1’. The weight of vertices marked
by circles is 2k + 1, and the weight of vertices marked
by lines is 10.

i ∈ [n]0} are equal to 1, and the labels of all other arcs
are equal to 0. Moreover, the weight of the vertices in
the set T̂ ∪P ∪A are equal to 10, and the weights of all
other vertices are equal to 2k + 1. This completes the
description of C. When the clock C is not clear from
context, we add the notation (C) to an element (vertex
set or vertex) of the clock. For example, we may write
R(C) and x(C).

Intuition. It is easy to verify that any solution has to
have non-empty intersection with the face of the clock,
the cycle starting at x following the blue hand to y and
returning to x, and the cycle starting at x following the
red hand to y and returning to x. This requires total
weight at least 30. The following Lemmata establish
the structure of all directed odd cycle transversals of
the clock gadget of weight exactly 30, and prove that
any directed odd cycle transversal of weight more than
30 must have weight at least 40.

A directed odd cycle transversal of the clock gadget
of weight less than 40 must pick one vertex t̂s,n−(s+1) on
the face of the clock, one vertex pi on the red hand, and
one vertex aj on the blue hand. We will show that these
three vertices form a directed odd cycle transversal of
the clock gadget if and only if i−1 ≤ s and j ≤ n−s. In
other words we can think of the variable s as the “time”
shown by the clock, and as the time s increases we are

allowed to pick the vertex pi further away from x on
the red hand, but at the same time we need to pick the
vertex aj closer to x. This is captured in Definition 3.1
and Lemmata 3.2 and 3.3.

Properties. From the definition of a forward clock, we
directly identify which directed odd cycles are present
in such a clock.

Observation 3.1. Let C be a forward clock. The set
of directed odd cycles of C is the union of the following
sets.

• Type 1: The set whose only directed odd cycle is
the one consisting of the entire red hand and the
arc (y, x).

• Type 2: The set whose only directed odd cycle is
the one consisting of the entire blue hand and the
arc (y, x).

• Type 3: For all i ∈ [n]0, this set contains the
directed odd cycle consisting of the directed path
from x to ri on the red hand, the arc (ri, r̂i), and
the directed path from r̂i to x on the face of the
clock that contains the arc (r̂n, x).

• Type 4: For all i ∈ [n]0, this set contains the
directed odd cycle consisting of the directed path
from x to bi on the blue hand, the arc (bi, b̂i), and

the directed path from b̂i to x on the face of the
clock that contains the arc (̂bn, x).

• Type 5: The set whose only directed odd cycle is
the face of the clock.

We proceed to derive properties of “cuts” of a
forward clock. To this end, we first need to define the
kind of sets using which we would like to “cut” forward
clocks.

Definition 3.1. Let C be a forward clock. We say that
a set X ⊆ V (C) cuts C precisely if there exist i, j, s ∈ [n]
such that X = {pi, aj , t̂s,n−s−1}, i−1 ≤ s and j ≤ n−s.

Definition 3.1 directly implies the following obser-
vation.

Observation 3.2. Let C be a forward clock. If X =
{pi, aj , t̂s,n−s−1} is a set that cuts C precisely, then
i+ j ≤ n+ 1.

We are now ready to present the desired properties
of “cuts” of a forward clock.

Lemma 3.2. Let C be a forward clock. A set X ⊆ V (C)
is a directed odd cycle transversal of C of weight exactly
30 if and only if X cuts C precisely.



… 

’ 

’ 
’  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

… 

’ ’ 
’ ’ 

’ 

’ 

’ 
’ 

’ 

Figure 4: The face of a reverse clock.

Lemma 3.3. Let C be a forward clock. The weight of a
set X ⊆ V (C) that is a directed odd cycle transversal of
C but does not cut C precisely is ≥ 40.

3.2.2 Reverse Clock A reverse clock is simply a
forward clock where the directions of all arcs have been
reversed. For readability reasons it is useful to re-name
the vertices (so that, for example, we avoid arcs going
from post to pre), and modify the numbering of the
vertices. The proofs in this subsection are identical to
the proofs in Subsection 3.2.1, up to permutation of
vertex names, changing “from” to “to” and vice versa,
and changing the indices. We include the proofs and
figures for completeness and ease of reference, since
changing the indices slightly changes the equations.

Structure. The face of a reverse clock C is an “undi-
rected” cycle whose vertex set is the union of four
pairwise-disjoint sets R̂′ (red), B̂′ (blue), T̂ ′ (time) and
{z}. We refer the reader to Fig. 4. We set R̂′ = {r̂′i : i ∈
[n]0}, B̂′ = {b̂′i : i ∈ [n]0} and T̂ = {t̂′i,n−i+1 : i ∈ [n]}.
The arc set of the face is the union of the following three
pairwise-disjoint sets.

• {(z, r̂′0), (z, b̂′0), (r̂′0, z), (̂b
′
0, z)}.

• {(̂b′i, r̂′n−i) : i ∈ [n]0} ∪ {(r̂′n−i, b̂′i) : i ∈ [n]0}.

• {(r̂′i, t̂′i,n−i+1) : i ∈ [n]} ∪ {(̂b′n−i+1, t̂
′
i,n−i+1) : i ∈

[n]}∪ {(t̂′i,n−i+1, r̂
′
i) : i ∈ [n]}∪ {(t̂′i,n−i+1, b̂

′
n−i+1) :

i ∈ [n]}.

The hands of C are two directed paths, red and
blue. These hands are defined exactly as the hands
of a forward clock, except that tags are added to the
names of all of their vertices (see Fig. 5). The hands are
attached to the face as follows (see Fig. 6). First, we
add the arcs (r′n, z) and (b′n, z). Second, for all i ∈ [n]0,

we add the arcs (r̂′i, r
′
i) and (̂b′i, b

′
i). Then, we “glue” the

hands by adding a new vertex, y, and the arcs (y, r′0),
(y, b′0) and (z, y).
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Figure 5: The hands of a reverse clock. For all i ∈ [n],
pre(p′i) = r′i−1 and post(p′i) = r′i, and pre(a′i) = b′i−1
and post(a′i) = b′i.
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Figure 6: A reverse clock. The arcs labeled 1 are marked
by a green ‘1’. The weight of vertices marked by circles
is 2k + 1, and the weight of vertices marked by lines is
10.

Finally, let us annotate C (see Fig. 6). The labels

of the arcs in the set {(z, r̂′0), (r̂′0, z), (z, y)} ∪ {(̂b′i, b′i) :



i ∈ [n]0} are equal to 1, and the labels of all other arcs
are equal to 0. Moreover, the weight of the vertices in
the set T̂ ′ ∪ P ′ ∪A′ are equal to 10, and the weights of
all other vertices are equal to 2k + 1. This completes
the description of C.

Properties. From the definition of a reverse clock, we
directly identify which directed odd cycles are present
in such a clock.

Observation 3.3. Let C be a reverse clock. The set
of directed odd cycles of C is the union of the following
sets:

• Type 1: The set whose only directed odd cycle is
the one consisting of the entire red hand and the
arc (z, y).

• Type 2: The set whose only directed odd cycle is
the one consisting of the entire blue hand and the
arc (z, y).

• Type 3: For all i ∈ [n]0, this set contains the
directed odd cycle consisting of the arc (r̂′i, r

′
i), the

directed path from r′i to z on the red hand, and the
directed path from z to r̂′i on the face of the clock
that contains the arc (z, r̂′0).

• Type 4: For all i ∈ [n]0, this set contains the

directed odd cycle consisting of the arc (̂b′i, b
′
i), the

directed path from b′i to z on the blue hand, and the

directed path from z to b̂′i on the face of the clock

that contains the arc (z, b̂′0).

• Type 5: The set whose only directed odd cycle is
the face of the clock.

As in the case of a forward clock, we proceed to
derive properties of “cuts” of a reverse clock. To this
end, we first need to define the kind of sets using which
we would like to “cut” reverse clocks.

Definition 3.2. Let C be a reverse clock. We say that
a set X ⊆ V (C) cuts C precisely if there exist i, j, s ∈ [n]
such that X = {p′i, a′j , t̂′s,n−s+1}, s ≤ i and n−s+1 ≤ j.

Definition 3.2 directly implies the following obser-
vation. Note that due to our placement of indices, the
inequality is complementary to the one in Observation
3.2.

Observation 3.4. Let C be a reverse clock. If X =
{p′i, a′j , t̂′s,n−s−1} is a set that cuts C precisely, then
i+ j ≥ n+ 1.

We are now ready to present the desired properties
of “cuts” of a reverse clock.

Lemma 3.4. Let C be a reverse clock. A set X ⊆ V (C)
is a directed odd cycle transversal of C of weight exactly
30 if and only if X cuts C precisely.

Lemma 3.5. Let C be a reverse clock. The weight of a
set X ⊆ V (C) that is a directed odd cycle transversal of
C but does not cut C precisely is at least 40.

3.3 The Double Clock Gadget Structure.
Roughly speaking, an (n, k)-double clock is the result
of gluing the tips of the hands of an (n, k)-forward
clock and an (n, k)-reverse clock together as well as
adding a 1-labeled arc from every vertex on the hands
of the reverse clock to its “twin” on the forward clock.
In what follows, since n and k would be clear from
context, we omit explicit references to (n, k). Formally,

a double clock C̃ is defined as the digraph obtained
as follows. Let C be a forward clock, and let C ′ be
a reverse clock. Identify the vertex y of both of these
clocks. All other vertices are distinct. Now, for all
i ∈ [n]0, add the arcs (r′i, ri) and (b′i, bi), and let the
labels of both of these arcs be 1 .

Properties. By the definition of a double clock, we first
directly identify which directed odd cycles are present
in such a clock.

Observation 3.5. Let C̃ be a double clock. The set of
directed odd cycles of C̃ is the union of the following
sets.

• Forward: The set of directed odd cycles completely
contained in the forward clock (see Observation
3.1).

• Reverse: The set of directed odd cycles completely
contained in the reverse clock (see Observation
3.3).

• Double Red: For all i ∈ [n]0, this set contains
the direct odd cycle consisting of the arc (r′i, ri),
the directed path from ri to y on the red hand of
the forward clock, and the directed path from y to
r′i on the red hand of the reverse clock.

• Double Blue: For all i ∈ [n]0, this set contains
the direct odd cycle consisting of the arc (b′i, bi), the
directed path from bi to y on the blue hand of the
forward clock, and the directed path from y to b′i on
the blue hand of the reverse clock.

We proceed to derive properties of “cuts” of a
double clock. To this end, we again first need to define
the kind of sets using which we would like to “cut”
double clocks.



Definition 3.3. Let C̃ be a double clock.
We say that a set X ⊆ V (C̃) cuts C̃ pre-
cisely if there exists i ∈ [n] such that X =
{pi, an−i+1, p

′
i, a
′
n−i+1, t̂i−1,n−i, t̂

′
i,n−i+1}.

We are now ready to present desired properties of
“cuts” of a double clock.

Lemma 3.6. Let C̃ be a double clock. A set X ⊆ V (C̃)

is a directed odd cycle transversal of C̃ of weight exactly
60 if and only if X cuts C̃ precisely.

Lemma 3.7. Let C̃ be a double clock. The weight of a
set X ⊆ V (C̃) that is a directed odd cycle transversal of

C̃ but does not cut C̃ precisely is at least 70.

To analyze structures that combine several double
clocks, we need to strengthen the reverse direction of
Lemma 3.6. More precisely, we need to derive additional
properties of a double clock from which we remove a set
that cuts it precisely (in addition to the claim that this
graph excludes directed odd cycles). For this purpose,
we first introduce the following definition, which breaks
a double clock into three “pieces”.

Definition 3.4. Let C̃ be a double clock, and let X be
a set that cuts C̃ precisely. Then, C̃[X,x] denotes the

subgraph of C̃ \ X induced by the set of vertices that

both can reach x and are reachable from x, and C̃[X, z]

denotes the subgraph of C̃ \ X induced by the set of
vertices that both can reach z and are reachable from z.
Moreover, C̃[X, y] denotes the subgraph of C̃\X induced

by the set of vertices that belong to neither C̃[X,x] nor

C̃[X, z].

Notice that for a double clock C̃, the only two
directed paths from x to y are the red and blue hands of
the forward clock of C̃, the only two directed paths from
y to z are the red and blue hands of the reverse clock
of C̃, and all of the directed paths from x to z contain
the vertex y. Moreover, to every vertex v on a hand
of the forward clock, there exists exactly one directed
path from x that avoids y. On the other hand, from the
vertex v, note that x is reachable by using an arc to the
face of the forward clock (in case of a vertex of weight
2k + 1) or an outgoing arc followed by an arc to the
face of the forward clock (in case of a vertex of weight
10), after which we append either of the two paths from
the vertex we have reached on the face of the forward
clock to x. A symmetric claim holds in the context of
z. In light of these observations, we identify each piece
of Definition 3.4 as follows.

Observation 3.6. Let C̃ be a double clock, and let
X = {pi, an−i+1, p

′
i, a
′
n−i+1, t̂i−1,n−i, t̂

′
i,n−i+1} be a set

that cuts C̃ precisely. Then, the following three condi-
tions are satisfied.

1. V (C̃[X,x]) = R̂∪ B̂∪ (T̂ \{t̂i−1,n−i})∪{x}∪{pi′ ∈
P : i′ < i} ∪ {ri′ ∈ R : i′ < i} ∪ {ai′ ∈ A : i′ <
n− i+ 1} ∪ {bi′ ∈ B : i′ < n− i+ 1}.

2. V (C̃[X, y]) = {y} ∪ {pi′ ∈ P : i′ > i} ∪ {ri′ ∈ R :
i′ ≥ i} ∪ {ai′ ∈ A : i′ > n− i+ 1} ∪ {bi′ ∈ B : i′ ≥
n− i+ 1} ∪ {p′i′ ∈ P ′ : i′ < i} ∪ {r′i′ ∈ R′ : i′ < i} ∪
{a′i′ ∈ A′ : i′ < n−i+1}∪{b′i′ ∈ B′ : i′ < n−i+1}.

3. V (C̃[X, z]) = R̂′∪B̂′∪(T̂ ′\{t̂′i,n−i+1})∪{z}∪{p′i′ ∈
P ′ : i′ > i} ∪ {r′i′ ∈ R′ : i′ ≥ i} ∪ {a′i′ ∈ A′ : i′ >
n− i+ 1} ∪ {b′i′ ∈ B′ : i′ ≥ n− i+ 1}.

Furthermore, we notice that the three pieces are lo-
cally “isolated” in a double clock. Here, isolation means
that there does not exist a vertex in one piece and a ver-
tex in another piece such that the first vertex can reach
the second one and vice versa. More precisely, since
C̃[X,x] and C̃[X, z] are strongly connected digraphs,

while (z, y), (y, x) ∈ A(C̃ \ X) and all of the directed

paths of C̃ from x to z contain y, we directly derive the
following observation.

Observation 3.7. Let C̃ be a double clock, and let X
be a set that cuts C̃ precisely. Then, the following two
conditions are satisfied: (1) There do not exist vertices

u ∈ V (C̃[X,x]) and v ∈ V (C̃[X, y]) ∪ V (C̃[X, z]) such

that there exists a directed path from u to v in C̃ \ X.

(2) There do not exist vertices u ∈ V (C̃[X, y]) and

v ∈ V (C̃[X, z]) such that there exists a directed path

from u to v in C̃ \X.

We also need to internally analyze each piece sepa-
rately. To this end, we introduce one additional defini-
tion.

Definition 3.5. Let D be a directed graph, and let
` : A(D)→ {0, 1}. We say that a function f : V (D)→
{b,w} is `-consistent for D if for all (u, v) ∈ A(D), it
holds that `(u, v) = 0 if and only if f(u) = f(v).

When the graph D is clear from context, we simply
write `-consistent rather than `-consistent for D. First,
we note the following simple observation, which hints at
the relevance of Definition 3.5 to A-DOCT.

Observation 3.8. Let D be a directed graph, and let
` : A(D) → {0, 1}. If there exists an `-consistent
function for D, then D does not contain a directed odd
cycle.

Let us now derive another simple implication of
Definition 3.5.



Lemma 3.8. Let D be a directed graph, ` : A(D) →
{0, 1}, and D′ be some subgraph of D whose underlying
undirected graph is connected and which contains only 0-
labeled arcs. Then, if D admits an `-consistent function,
then D also admits an `-consistent function f such that
for all v ∈ V (D′), it holds that f(v) = b.

We proceed by showing that for (arc-labeled)
strongly connected digraphs, we can easily find a con-
sistent function.

Lemma 3.9. Let D be a strongly connected directed
graph, and let ` : A(D)→ {0, 1}. If D does not contain
a directed odd cycle, then D admits a function f that is
`-consistent.

Finally, we are ready to present the last property of
a double clock relevant to our work.

Lemma 3.10. Let C̃ be a double clock, and let X be
a set that cuts C̃ precisely. Then, the following three
conditions are satisfied.

1. There exists an `-consistent function fx for C̃[X,x]
such that fx(x) = b and for every vertex v of

C̃[X,x] that does not belong to the face of the
forward clock, it holds that fx(v) = b.

2. The function that assigns b to every vertex of
C̃[X, y] is `-consistent for C̃[X, y].

3. There exists an `-consistent function fz for C̃[X, z]
such that fz(z) = b and for every vertex v of

C̃[X, z] that does not belong to the face of the
reverse clock, it holds that fz(v) = b.

3.4 The Synchronization Gadget Let n, k ∈ N
such that k ≥ 100, and let I ⊆ [n]×[n] be a set of pairs of
indices. Here, we define an (n, k, I)-synchronizer. Since
n and k would be clear from context, we simply write I-
synchronizer rather than (n, k, I)-synchronizer. When I
is also clear from context (or immaterial), we omit it as
well.

Structure. The hands of a synchronizer S are four red
directed paths, H, H ′, H̃ and H̃ ′. The vertex set of H
is the union of two pairwise disjoint sets, R = {ri : i ∈
[n]0} (red) and P = {pi : i ∈ [n]} (pink). For all i ∈ [n],
we denote pre(pi) = ri−1 and post(pi) = ri. The arc set
of H is {(pre(pi), pi) : i ∈ [n]} ∪ {(pi,post(pi)) : i ∈ [n]}
(see Fig. 7). The path H̃ is defined as the path H where
we use tilde notation to specify vertices. Similarly, H ′

and H̃ ′ are defined as the path H and H̃, respectively,
where we further use prime notation to specify vertices.
The weight of each vertex on these paths is 10, and the
label of each arc on these paths is 0. Now, to obtain the
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Figure 7: A synchronizer where n = 6. The arcs labeled
1 are marked by a green ‘1’. The weight of vertices
marked by circles is 2k+1, the weight of vertices marked
by lines is 10, and the weight of each vertex marked by
a square is either 2k + 1 or 1.

frame of S, we add three vertices, x, y and z, each of
weight 2k+1. Moreover, we add the arcs (x, r0), (x, r̃0),
(rn, y), (r̃n, y), (y, r′0), (y, r̃′0), (r′n, z) and (r̃′n, z). The
label of each of these arcs is 0. For the sake of clarity of
illustrations, the vertex y is drawn twice (see Fig. 7).

Next, we define the interior of S (see Fig. 7).
Roughly speaking, this part is a grid where each vertex
has either a very high weight or a very low weight,
depending on whether or not the pair of indices that the
vertex represents belongs to I. Formally, the interior of
S is the graph G on the vertex set {gi,j : i, j ∈ [n]}
and the arc set {(gi+1,j , gi,j) : i ∈ [n − 1], j ∈ [n]} ∪
{(gi,j+1, gi,j) : i ∈ [n], j ∈ [n− 1]}. The label of each of
the arcs is 0. Moreover, for all i, j ∈ [n], the weight of
gi,j is 1 if (i, j) ∈ I and 2k + 1 otherwise.

Finally, we attach the frame of S to the interior of S
(see Fig. 7). To this end, for all i ∈ [n], we add two arcs
labeled 1: (gi,1,post(pi)) and (pre(p̃′i), gn,i). Moreover,
for all i ∈ [n], we add two arcs labeled 0: (g1,i,post(p̃i))
and (pre(p′i), gi,n). When the synchronizer S is not clear
from context, we add the notation (S) to an element
(vertex set or vertex) of the synchronizer.

Properties. By the definition of a synchronizer, we first
directly identify which directed odd cycles are present
in such a gadget.

Observation 3.9. Let S be a synchronizer. The set of
directed odd cycles of S is the union of the following
sets.



• Horizontal Match: For all i ∈ [n], this set con-
tains the direct odd cycle consisting of the directed
path from y to pre(p′i) on H ′, the (unique) directed
path from pre(p′i) to post(pi) on the interior, and
the directed path from post(pi) to y on H.

• Horizontal Mismatch: For all i, j ∈ [n] such
that j < i, this set contains every direct odd cycle
consisting of the directed path from y to pre(p′i) on
H ′, some directed path from pre(p′i) to post(pj) on
the interior, and the directed path from post(pj) to
y on H.

• Vertical Match: For all i ∈ [n], this set contains
the direct odd cycle consisting of the directed path
from y to pre(p̃′i) on H̃ ′, the (unique) directed path
from pre(p̃′i) to post(p̃i) on the interior, and the

directed path from post(p̃i) to y on H̃.

• Vertical Mismatch: For all i, j ∈ [n] such that
j < i, this set contains every direct odd cycle
consisting of the directed path from y to pre(p̃′i) on

H̃ ′, some directed path from pre(p̃′i) to post(p̃j) on
the interior, and the directed path from post(p̃j) to

y on H̃.

We proceed to derive properties of “cuts” of a
synchronizer. To this end, we again first need to define
the kind of sets using which we would like to “cut”
synchronizers.

Definition 3.6. Let S be an I-synchronizer. We say
that a set X ⊆ V (S) cuts S precisely if there exist i, j ∈
[n] such that X = {pi, p′i, p̃j , p̃′j , gi,j} and (i, j) ∈ I.

Definition 3.7. Let S be an I-synchronizer. We say
that a set X ⊆ V (S) cuts S roughly if X does not
cut S precisely and there exist i, j ∈ [n] such that
{pi, p′i, p̃j , p̃′j} ⊆ X.

We are now ready to present desired properties of
“cuts” of a synchronizer. Unlike the cases of clocks,
here we only analyze cuts of the forms presented in
Definitions 3.6 and 3.7. The first property follows
directly from Definition 3.6.

Observation 3.10. The weight of a set that cuts a
synchronizer precisely is exactly 41. In particular, the
weight of the intersection of this set with the interior is
exactly 1.

Let us now argue that all directed odd cycles are
intersected.

Lemma 3.11. Let S be a synchronizer, and let X be a
set that cuts S precisely. Then, S \X does not contain
a directed odd cycle.

 

Figure 8: The components S[X,x] (green), S[X, y]
(yellow), S[X, z] (blue), S[X, lx] (purple) and S[X, lz]
(brown), where X is the set of red vertices (see Defini-
tion 3.8).

Next, we analyze the weight of rough cuts.

Lemma 3.12. Let S be a synchronizer, and let X be a
set that cuts S roughly. Then, w(X) ≥ 42.

As in the case of the double clock, we need to
strengthen Lemma 3.11. For this purpose, we introduce
the following definition, which breaks a synchronizer
into five “pieces” (see Fig. 8).

Definition 3.8. Let S be a synchronizer, and let X be
a set that cuts S precisely. Then, S[X, y] denotes the
subgraph of S \ X induced by the set of vertices that
both can reach y and are reachable from y. Moreover,
S[X,x] denotes the subgraph of S \ X induced by the
set of vertices reachable from x, and S[X, z] denotes
the subgraph of S induced by the set of vertices that
can reach z. Finally, S[X, lx] denotes the subgraph of
S \X induced by the set of vertices outside S[X,x] that
can reach a vertex of S[X,x] without using any vertex
of S[X, y], and S[X, lz] denotes the subgraph of S \ X
induced by the set of vertices outside S[X, z] that are
reachable from a vertex of S[X, z] without using any
vertex of S[X, y].

Notice that for a synchronizer S, the only two
directed paths from x to y are those internally consisting
of H and H̃, the only two directed paths from y to z
are those internally consisting of H ′ and H̃ ′, and all
of the directed paths from x to z contain the vertex
y. Moreover, the vertex y and every vertex gi,j of the



interior are both contained in the two following (even)
directed cycles, among other directed cycles, whose
only common vertices are y and gi,j : (i) the directed
cycle consisting of the path from y to pre(p′i) on H ′,
the (unique) directed path from pre(p′i) to gi,j on the
interior, the (unique) directed path from gi,j to post(p̃j)
on the interior, and the directed path from post(p̃j)

to y on H̃; (ii) the directed cycle consisting of the

path from y to pre(p̃′j) on H̃ ′, the (unique) directed
path from pre(p̃′j) to gi,j on the interior, the (unique)
directed path from gi,j to post(pi) on the interior, and
the directed path from post(pi) to y on H. In light of
these observations, we identify each piece of Definition
3.8 as follows (see Fig. 8).

Observation 3.11. Let S be a synchronizer, and let
X = {pi, p′i, p̃j , p̃′j , gi,j} be a set that cuts S precisely.
Then, the following five conditions are satisfied:

1. V (S[X,x]) = {x} ∪ {pi′ ∈ V (H) : i′ < i} ∪ {ri′ ∈
V (H) : i′ < i} ∪ {p̃j′ ∈ V (H̃) : j′ < j} ∪ {r̃j′ ∈
V (H̃) : j′ < j}.

2. V (S[X, y]) = {y} ∪ {pi′ ∈ V (H) : i′ > i} ∪ {ri′ ∈
V (H) : i′ ≥ i} ∪ {p̃j′ ∈ V (H̃) : j′ > j} ∪ {r̃j′ ∈
V (H̃) : j′ ≥ j} ∪ {p′i′ ∈ V (H ′) : i′ < i} ∪ {r′i′ ∈
V (H ′) : i′ < i} ∪ {p̃′j′ ∈ V (H̃ ′) : j′ < j} ∪ {r̃′j′ ∈
V (H̃ ′) : j′ < j} ∪ ({gi′,j′ ∈ V (G) : i′ ≤ i, j′ ≥
j} ∪ {gi′,j′ ∈ V (G) : i′ ≥ i, j′ ≤ j}) \ {gi,j}.

3. V (S[X, z]) = {z} ∪ {p′i′ ∈ V (H ′) : i′ > i} ∪ {r′i′ ∈
V (H ′) : i′ ≥ i} ∪ {p̃′j′ ∈ V (H̃ ′) : j′ > j} ∪ {r̃′j′ ∈
V (H̃ ′) : j′ ≥ j}.

4. V (S[X, lx]) = {gi′,j′ ∈ V (G) : i′ < i, j′ < j}.

5. V (S[X, lz]) = {gi′,j′ ∈ V (G) : i′ > i, j′ > j}.

Furthermore, in light of Observation 3.11, we notice
that the five pieces are locally “isolated” in a synchro-
nizer as follows.

Observation 3.12. Let S be a synchronizer, and let X
be a set that cuts S precisely. Then, the following five
conditions are satisfied:

1. There do not exist vertices u ∈ V (C̃[X,x]) and v ∈
V (S[X, lx])∪ V (S[X, y])∪ V (S[X, lz])∪ V (S[X, z])
such that there exists a directed path from u to v in
S \X.

2. There do not exist vertices u ∈ V (C̃[X, lx]) and
v ∈ V (S[X, y])∪V (S[X, lz])∪V (S[X, z]) such that
there exists a directed path from u to v in S \X.

3. There do not exist vertices u ∈ V (C̃[X, y]) and
v ∈ V (S[X, lz]) ∪ V (S[X, z]) such that there exists
a directed path from u to v in S \X.

4. There do not exist vertices u ∈ V (C̃[X, lz]) and
v ∈ V (S[X, z]) such that there exists a directed path
from u to v in S \X.

Finally, we need to internally analyze each piece
separately.

Lemma 3.13. Let S be a synchronizer, and let X be
a set that cuts S precisely. Then, the following two
conditions are satisfied: (1) For each of the graphs
S[X,x], S[X, lx], S[X, lz] and S[X, z], the function that
assigns b to every vertex of the graph is `-consistent.
(2) There exists an `-consistent function fy for S[X, y]
such that for every vertex v of the frame that belongs to
S[X, y], it holds that fy(v) = b.

3.5 Reduction We are now ready to present the
complete reduction from PSI to A-DOCT. For this
purpose, let (H,G, col) be an instance PSI. We assume
that |V (G)| ≥ 100, else a solution can be found by brute
force in polynomial time. If G contains an isolated
vertex to which no vertex in H is mapped by col,
then the input instance is a no-instance; otherwise, by
removing all of the isolated vertices of G and the vertices
of H that are mapped to them, we obtain an instance
of PSI that is equivalent to (H,G, col). Thus, we next
assume that G does not contain isolated vertices. For
all g ∈ V (G), denote V g = {v ∈ V (H) : col(v) = g}.
We next assume that for all g, g′ ∈ V (G), it holds
that |V g| = |V g′ | = n (for the appropriate n), else
we can add isolated vertices to H to ensure that this
condition holds. Then, for all g ∈ V g, denote V g =
{vg1 , v

g
2 , . . . , v

g
n}. Let < be some arbitrary order on

V (G).
We construct an instance red(H,G, col) =

(D, k, `, w) of A-DOCT as follows. First, we set
k = 60|V (G)| + |E(G)|. Next, we turn to construct
(D, k, `, w). For every g ∈ V (G), we insert one (n, k)-

double clock C̃g. For every edge e = {g, g′} ∈ E(G)
where g < g′, we insert one (n, k, Ie)-synchronizer Se

where Ie = {(i, j) : {vgi , v
g′

j } ∈ E(H)}. We identify the
vertices x, y and z of all double clocks and synchroniz-
ers. That is, we now have a single vertex called x, a
single vertex called y and a single vertex called z. Fi-
nally, for every edge e = {g, g′} ∈ E(G) where g < g′,

we identify the red hand of the forward clock of C̃g with
the hand H of Se, the red hand of the reverse clock of
C̃g with the hand H ′ of Se, the red hand of the forward
clock of C̃g

′
with the hand H̃ of Se, and the red hand of

the reverse clock of C̃g
′

with the hand H̃ ′ of Se. Here,



by identifying two directed paths of the same number
2n+ 1 of vertices, we mean that for all i ∈ [2n+ 1], we
identify the ith vertex on one path with the ith vertex
on the other path. Consequently, for all i ∈ [2n], we also
identify the ith arc on one path with the ith arc on the
other path. We remark that next, when we refer to an
element of a specific double clock or a specific synchro-
nizer, we would refer to the new unified vertex. For ex-
ample, given an edge e = {g, g′} ∈ E(G) where g < g′,
we have that r3(Cg) = r3(Se) and r′5(Cg

′
) = r̃′5(Se).

This completes the description of the reduction.

3.6 Correctness It remains to derive the correctness
of Theorem 1.1. To this end, first note that since
|V (G)| ≥ 100 and G does not contain isolated vertices,
we have the following observation.

Observation 3.13. Let (H,G, col) be an instance of
PSI. Then, for (D, k, `, w) = red(H,G, col), it holds
that 100 ≤ k ≤ 121|E(G)|.

Clearly, we also have the following observation.

Observation 3.14. Let (H,G, col) be an instance of
PSI. Then, the instance red(H,G, col) can be con-
structed in polynomial time.

To verify the correctness of the reduction, we first
prove the forward direction, summarized in the follow-
ing lemmata.

Lemma 3.14. Let (H,G, col) be a yes-instance of PSI.
Then, (D, k, `, w) = red(H,G, col) is a yes-instance of
A-DOCT.

We next prove a strengthened version of the reverse
direction, which would be necessary to derive our inap-
proximability result.

Lemma 3.15. Fix ε ≥ 0. There exists δ = δ(ε) ≥ 0,
where if ε > 0 then δ > 0, such that the following
condition holds: Given an instance (H,G, col) of PSI,
if red(H,G, col) admits a (1 + δ)-approximate solution,
then there exists a colorful mapping of a subgraph G′ of
G into H such that G′ contains at least (1 − ε)|E(G)|
edges.

As a direct corollary to Lemma 3.15 with ε = 0, we
have the following result.

Corollary 3.2. If (H,G, col) is a no-instance of PSI,
then (D, k, `, w) is a no-instance of A-DOCT.

We are now ready to derive the correctness of
Theorem 1.1.

Proof. [Proof of Theorem 1.1] By Lemma 3.14, Corol-
lary 3.2 and Observations 3.13 and 3.14, given any in-
stance (H,G, col) of PSI, we can construct in poly-
nomial time an equivalent instance (D, k, `, w) of A-
DOCT such that k ≤ 121|E(G)|. Thus, by Proposition
3.1, A-DOCT is W[1]-hard. Moreover, by Proposition
3.1, unless ETH fails, A-DOCT cannot be solved in

time f(k) ·no(
k

log k ) for any function f . Hence, by Corol-
lary 3.1, we conclude that Theorem 1.1 is correct.

4 Parameterized Inapproximability

In this section, we prove Theorem 1.3. For convenience,
let us restate the theorem below.

Theorem 4.1. Assuming Gap-ETH or PIH and FPT
6= W[1], there exists an ε > 0 such that DOCT
does not admit an FPT-approximation algorithm with
approximation ratio 1 + ε.

We first recall basic concepts concerning constraint
satisfaction, after which we define the gap-ETH and
show that an FPT-approximation algorithm for ε-gap-
BCSP would violate the gap-ETH. Then we reduce ε-
gap-BCSP to the special case of this problem where
every variable occurs in at most three constraints.
Finally we conclude the proof of Theorem 1.3.

4.1 Constraint Satisfaction Given a set of vari-
ables X = {x1, x2, . . . , xk} and a family of pairwise-
disjoint domains D = {D1, D2, . . . , Dk}, a binary con-
straint is a pair c = ((xi, xj), R) where xi, xj ∈ X,
i 6= j, and R is a binary relation over Di × Dj . An
evaluation is a function ψ : X →

⋃
D such that for all

xi ∈ X, ψ(xi) ∈ Di. An evaluation ψ is said to sat-
isfy ((xi, xj), R) if (ψ(xi), ψ(xj)) ∈ R. Moreover, given
a multiset C of binary constraints, an evaluation ψ is
said to satisfy C if it satisfies every constraint c ∈ C.
For all i ∈ [k], let Ci ⊆ C denote the sub(multi)set of
constraints where xi occurs, and let si = |Ci|. We as-
sume w.l.o.g. that for all i ∈ [k], si ≥ 1, that is, for every
variable in X, there exists at least one binary constraint
where it occurs.

Here, we cannot assume w.l.o.g. that C is a set
rather than a multiset, or more generally, that for all
distinct i, j ∈ [k], |Ci ∩ Cj | ≤ 1.3 Indeed, here we do
not only care whether we can satisfy C or not (if this
were the case, then it would have been trivial to see
how, given an instance where |Ci ∩ Cj | ≥ 2 for some
i, j ∈ [k], obtain an equivalent instance with the same
set of variables and where |Ci∩Cj | ≤ 1 for all i, j ∈ [k]),

3In other words, we cannot assume w.l.o.g. that for every pair

of variables in X, there exists at most one binary constraint in C
where both of these variables occur.



but also what is the fraction of constraints that are
satisfied. However, as we would see later, it would
actually still be simple to ensure the property above. We
do not ensure it just yet, as in the reduction in Section
4.2, we implicitly rely on the possibility to allow pairs
of variables to occur in more than one constraint.

The Binary Constraint Satisfaction Prob-
lem (BCSP) is defined as follows. The input is a set
X = {x1, x2, . . . , xk} of k variables, a family of pairwise-
disjoint domains D = {D1, D2, . . . , Dk}, and a multi-
set C of binary constraints. The objective is to decide
whether there exists an evaluation that satisfies C?

Recall that the promise problem ε-gap-BCSP is
defined as BCSP where the input instance is promised
to either be satisfiable, or has the property that every
evaluation satisfies fewer than (1 − ε) fraction of the
constraints.

4.2 Hardness of ε-gap-BCSP assuming the gap-
ETH First we state the gap-ETH. This definition is
taken verbatim from Chalermsook et al. [6]. Max
q-SAT is a maximization version of q-SAT that asks
to compute the maximum number of clauses in φ that
can be simultaneously satisfied. We will abuse q-SAT to
mean Max q-SAT, and for a formula φ, we use SAT (φ)
to denote the maximum number of clauses satisfied by
any assignment. The Gap Exponential Time Hypothesis
can now be stated in terms of SAT as follows.

Conjecture 4.1. ((rand.) Gap Exponential-Time Hy-
pothesis (gap-ETH) [19, 36]) For some constant δ, ρ, c >
0, no algorithm can, given a 3-SAT formula φ on n vari-
ables and m ≤ cn clauses, distinguish between the fol-
lowing cases correctly with probability ≥ 2/3 in O(2δn)
time: (i) SAT (φ) = m and (ii) SAT (φ) < (1− ρ)m.

Next we relate gap-ETH with hardness of ε-gap-
BCSP, the problem underlying PIH.

Theorem 4.2. Assuming the gap-ETH there exists an
ε > 0 such that there is no FPT-approximation algo-
rithm for ε-gap-BCSP.

Proof. Given ρ, an integer k and a SAT formula φ we
construct an instance I = (X,D, C) of ε-gap-BCSP
with 2k variables as follows. We will assume that
both the number n of variables and the number m of
clauses in φ is divisible by k, and that the variables are
v0, v1, . . . , vn−1 and the clauses are Q0, Q1, . . . , Qm−1.
We assume without loss of generality that each clause
Qi contains precisely 3 literals, q1i , q

2
i , q

3
i .

We group the variables into k groups of n/k vari-
ables each: for 0 ≤ r ≤ k − 1 the r’th group consists
of {v rn

k
, v rn

k +1, . . . , v (r+1)n
k −1}. Similarly we group the

clauses into k groups with m/k clauses in each group as
follows. For 0 ≤ r ≤ k − 1 the r’th group consists of
{Q rm

k
, Q rm

k +1, . . . , Q (r+1)m
k −1}.

The set X of variables of I is
{x0, . . . , xk−1, y0, . . . , yk−1} and the domain of each
variable in x0, . . . , xk is {0, 1}n/k. The domain of each
variable in y0, . . . , yk−1 is {1, 2, 3}m/k. There is a nat-
ural one-to-one correspondence between an assignment
of a value in {0, 1}n/k to xr and an assignment of truth
values to the variables in the r’th group of variables φ.
In particular the i’th bit of xr is equal to the value of
v rn
k +i. We will interpret an assignment of {1, 2, 3}m/k

to a variable yr as follows. If the i’th character of yr
is t then the t’th literal of the clause Q rm

k +i (namely
qtrm
k +i) is set to true.

For each clause Qi of φ and literal qti ∈ Qi we add a
constraint to the instance I. (We remark that it would
thus be possible that for a pair of variables, more than
one constraint where they occur may be added.) Let
i = rm

k + j, in other words Qi is the j’th clause of the
r’th group. Similarly, let qti be a literal corresponding to
the variable v sn

k +`, either positively or negatively. Thus
qti is a literal of the `’th variable in the s’th variable
group of φ.

We add a constraint to I between xs and yr. If
qti is a positive literal, this constraint is satisfied unless
the j’th character of yr is t and the `’th bit of xr is
0. If qti is a negative literal, this constraint is satisfied
unless the j’th character of yr is t and the `’th bit of
xr is 1. In other words, the constraint is falsified if
yr “claims” that the literal qti is set to true while xs
claims that the variable corresponding to qti is set such
that qti is false. The total number of such constraints
is exactly 3m. Thus the number of variables in the
constructed instance is 2k and the total size of the
instance is O(k3cn/k +m).

For completeness, suppose there is an assignment of
truth values to v0, . . . , vn−1 that satisfies all clauses. Set
xi’s according to this assignment. For every clause Qi
there is a literal qtii that is set to true. Let i = mr

k + j,
set the j’th character of yr to ti. By construction all
3m constraints of the instance I are satisfied.

For soundness, suppose that there is an assignment
to x0, . . . , xk−1 and y0, . . . , yk−1 that satisfies at least
(1− ε

3 )3m constraints of I. We consider the assignment
to v0, . . . , vn−1 that corresponds to the assignment to
x0, . . . , xk−1. We argue that at least (1 − ε)m clauses
are satisfied by this assignment.

There are at most εm unsatisfied constraints in I.
Each clause Qi of φ gave rise to 3 constraints in I, call
the clauseQi happy if all of its 3 constraints are satisfied.
Since there are at most εm unsatisfied constraints, there
are at least (1− ε)m happy clauses. We now argue that



all happy clauses are satisfied.
Let Qi be a happy clause, and let i = rm

k + j. Let
ti be the j’th character of yr. Let v sn

k +` be the variable

that corresponds to the literal qtii . In the construction
of the instance I we added a constraint that would be
falsified if the j’th character of yr is ti and at the same
time the `’th bit of xs was set such that setting v sn

k +` to

the `’th bit of xs falsifies the literal qtii . Since the clause
Qi is happy this constraint is not falsified and hence the
clause Qi is satisfied.

Suppose now that ε/3-gap-BCSP has an FPT
algorithm with running time f(k)|I|O(1) where |I| is
the size of the input instance I. Let g(k) be a non-
decreasing function of k that tends to infinity with k
such that f(2 · g(k)) ≤ k.

Construct from φ a ε/3-gap-BCSP instance as
defined above with k = g(n), run the algorithm for ε/3-
gap-BCSP, and return the same answer. The total
running time of the algorithm is upper bounded by
f(2k)|I|O(1) ≤ f(g(n)) · (k3cn/k + m)O(1) ≤ n · g(n) ·
3O(cn/g(n)) ·mO(1) ·2o(n). This contradicts the gap-ETH,
concluding the proof.

4.3 Constraint Satisfaction with Bounded De-
gree For all i, j ∈ [k], denote C{i,j} = Ci ∩ Cj , that
is, the multiset of constraints in C where xi and xj oc-
cur together (if a constraint c belongs to C{i,j}, then
its number of occurrences is equal to its number of oc-
currences in C). Moreover, for all i, j ∈ [k], denote
s{i,j} = |C{i,j}|. Note that |C| =

∑
i,j∈[k],i<j s{i,j}.

For a fixed integer d, the ε-gap-BCSPd is defined as
the special case of ε-gap-BCSP where every variable is
present in at most d constraints, and for all i, j ∈ [k],
s{i,j} ≤ 1 (that is, every two variables occur together
in at most one constraint). Before we turn to prove
the hardness of ε-gap-BCSP3, which is the main part
of this section, we first simplify the instances of ε-gap-
BCSP that we need to analyze.

We prove that in what follows, it would be “safe”
to assume that |C| = kO(1). To this end, we first prove
the following simple lemma.

Lemma 4.1. There exists a polynomial-time algorithm
that, given an instance I = (X,D, C) of ε-gap-BCSP

with k = |X|, constructs another instance Î = (X,D, Ĉ)

of ε-gap-BCSP with |Ĉ| = |C| and the following
properties:

• for all i, j ∈ [k], there is at most one distinct

constraint in Ĉ{i,j};
4

4The distinct constraint in Ĉ{i,j} may occur more than once

in Ĉ{i,j}, that is, ŝ{i,j} may be larger than 1.

• if I is satisfiable, then Î is satisfiable;

• if Î admits an evaluation that satisfies at least
(1− ε)|Ĉ| constraints, then I admits an evaluation
that satisfies at least (1− ε)|C| constraints.

We now show how to ensure that |C| is small.

Lemma 4.2. There exists a polynomial-time algorithm
that, given an instance I = (X,D, C) of ε-gap-BCSP

with k = |X|, constructs another instance Î = (X,D, Ĉ)
of ε

2 -gap-BCSP with the following properties:

• |Ĉ| ≤ k4

ε ;

• if I is satisfiable, then Î is satisfiable;

• if Î admits an evaluation that satisfies at least
(1− ε

2 )|Ĉ| constraints, then I admits an evaluation
that satisfies at least (1− ε)|C| constraints.

Proof. Let I ′ = (X,D, C ′) be an instance of ε-gap-

BCSP with k = |X|. Suppose that |C| > k4

ε , else
we are already done. By Lemma 4.1, we obtain in
polynomial time an instance I = (X,D, C) such that for
all i, j ∈ [k], there is at most one distinct constraint in
C{i,j}, and |C| = |C ′|. Now, we construct in polynomial

time an instance Î = (X,D, Ĉ) of ε
2 -gap-BCSP as

follows. Denote K =
(
k
2

)
and T = ε

2 |C|(>
k4

2 ). Let

Ĉ{i,j} be a multiset of ŝ{i,j} := bKT s{i,j}c(≤ s{i,j})
occurrences of the distinct constraint in C{i,j}. Define

Ĉ =
⋃
i,j∈[k],i<j Ĉ{i,j} (note that Ĉ is a multiset).

Observe that |Ĉ| =
∑
i,j∈[k],i<j ŝ{i,j} =∑

i,j∈[k],i<jb
K
T s{i,j}c ≤

∑
i,j∈[k],i<j

K
ε
2 |C|

s{i,j}.

Since for all i, j ∈ [k], s{i,j} ≤ |C|, we have that

|Ĉ| ≤
∑
i,j∈[k],i<j

K
ε
2

= 2K2

ε ≤ k4

ε as required. More-

over, because Ĉ ⊆ C and by Lemma 4.1, we have that
if I ′ is satisfiable, then I is satisfiable, and therefore Î
is satisfiable as well.

Now, suppose that Î admits an evaluation ψ that
satisfies at least (1− ε

2 )|Ĉ| constraints. By Lemma 4.1,
to show that I ′ admits an evaluation that satisfies at
least (1 − ε)|C ′| constraints, it suffices to show that I
admits an evaluation that satisfies at least (1−ε)|C| con-
straints. Let A be the collection of sets {i, j}, i, j ∈ [k]
where i < j, such that ψ satisfies the distinct con-
straint in C{i,j}. Then, the number of constraints in C

that ψ satisfies is
∑
{i,j}∈A s{i,j} ≥

T
K

∑
{i,j}∈A ŝ{i,j} ≥

T
K (1 − ε

2 )|Ĉ| ≥ T
K (1 − ε

2 )
∑
i,j∈[k],i<j ŝ{i,j} ≥

T
K (1 −

ε
2 )
∑
i,j∈[k],i<j(

K
T s{i,j} − 1) = T

K (1 − ε
2 )(KT |C| − K) =

(1− ε
2 )|C| − (1− ε

2 )T ≤ (1− ε
2 )|C| − T = (1− ε

2 )|C| −
ε
2 |C| = (1− ε)|C|. This concludes the proof.



In light of Lemma 4.2, throughout the remainder of

this section we assume that |C| ≤ k4

ε .
Recall that for a fixed integer d, the ε-gap-BCSPd

is defined as the special case of ε-gap-BCSP where
every variable is present in at most d constraints, and
for all i, j ∈ [k], s{i,j} ≤ 1 . Towards the proof of
the hardness of ε-gap-BCSP3, we first consider ε-gap-
BCSP4. For this proof, we need to recall the notion of
an expander.

Definition 4.1. Given n, d ∈ N and 0 ≤ γ ≤ 1, an
(n, d, γ)-expander is an undirected d-regular graph G on
n vertices such that for every set S ⊆ V (G) of size at
most 1

2 |V (G)|, the number of edges with one endpoint in
S and the other endpoint in V (G)\S is at least γ ·d · |S|.

For the sake of brevity, given n1, n2 ∈ N, we refer
to any (n, d, γ)-expander where n1 ≤ n ≤ n2 as an
([n1, n2], d, γ)-expander. We would also need to rely on
the following result.

Proposition 4.1. ([2]) There exist γ > 0 and ` ∈ N
such that for all s ∈ N, an ([s, `s], 3, γ)-expander can be
constructed in polynomial time.

Lemma 4.3. Assuming PIH, there exists an ε > 0 such
that ε-gap-BCSP4 is W[1]-hard.

Proof. To prove that the lemma is correct, we present
a reduction from ε-gap-BCSP to δ-gap-BCSP4 where

δ =
ε

4`(1 + 1
3γ )

. Here, γ and ` are the fixed constants

stated in Proposition 4.1. For this purpose, let I =
(X,D, C) be an instance of ε-gap-BCSP. Then, we

construct an instance Î = (X̂, D̂, Ĉ) of δ-gap-BCSP4

as follows. First, for all i ∈ [k], apply Proposition 4.1
to construct an ([si, `si], 3, γ)-expander Gi (recall that
si = |Ci|, the number of constraints where xi occurs),
and denote ni = |V (Gi)|. Now, for all i ∈ [k], define

X̂i = {x̂i1, x̂12, . . . , x̂ini}, and let f i : X̂i → V (Gi) be
an arbitrarily chosen bijective function. Accordingly,

set X̂ =
⋃k
i=1 X̂

i. Recall that we assume that |C| ≤ k4

ε .
Moreover, since the constraints are binary, we have that
k∑
i=1

si = 2|C|. Therefore, |X̂| =

k∑
i=1

ni ≤ `

k∑
i=1

si =

2`|C| ≤ 2`
k4

ε
. That is, the number of variables in the

new instance is bounded by a function of k.
We proceed to define D̂ by letting the domain of

every x̂ij , where i ∈ [k] and j ∈ [ni], be D̂i
j = {d̂ij :

d ∈ Di}. Finally, let us define Ĉ as follows. For all
i ∈ [k], let gi : Ci → Xi be an arbitrarily chosen
injective function. Then, for all c = ((xi, xj), R) ∈
C, denote ĉ = ((xip, x

j
q), R̂ = {(d̂ip, d̂′

j

q) : (d, d′) ∈

R}) where xip = gi(xi) and xjq = gj(xj). Define
C? = {ĉ : c ∈ C}. We now define a set of equality
constraints on the set of ‘copies’ of each variable. Define
C= = {((xip, xiq), {(dip, diq) : d ∈ Di}) : i ∈ [k], p, q ∈
[ni], (p, q) ∈ E(Gi)}. Finally, set Ĉ = C? ∪ C=. Since
for all i ∈ [k], the graph Gi is 3-regular, we have that

every variable in X̂i occurs in at most three constraints
in C=. Moreover, since for all i ∈ [k] the function gi is

injective, we have that every variable in X̂i occurs in at
most one constraint in C?. Thus, every variable in X̂
occurs in at most four constraints in total. Thus, since
every constraint is binary, we also have that |Ĉ| ≤ 2|X̂|.
Since we have already shown that |X̂| ≤ 2`|C|, we derive

that |Ĉ| ≤ 4`|C|.
To prove that the reduction is correct, we argue

that if I is satisfiable (admits an evaluation satisfying

all constraints) then so is Î and conversely, if Î admits an

evaluation that satisfies at least (1 − δ)|Ĉ| constraints,
then I admits an evaluation that satisfies at least
(1− ε)|C| constraints.

Suppose that I admits an evaluation ψ that satisfies
all of the constraints. Then, we have that Î also admits
an evaluation ψ̂ that satisfies all of the constraints.
Indeed, we simply define ψ̂ by setting ψ̂(xij) = dij , where
d = ψ(xi), for all i ∈ [k] and j ∈ [ni].

Next, suppose that Î admits an evaluation ψ̂ that
satisfies at least (1 − δ)|Ĉ| constraints. We define an
evaluation ψ for I as follows. For all i ∈ [k] and d ∈ Di,

define Xi(d) = {xij ∈ Xi : ψ̂(xij) = dij}. Now, for all

i ∈ [k], let d̃i be a value in Di that among all values
in Di, maximizes |Xi(d)| (if there is more than one
choice, choose one arbitrarily). Moreover, for all i ∈ [k],

denote Y i = Xi \ Xi(d̃i). Then, for all i ∈ [k], we set

ψ(xi) = d̃i. We claim that ψ satisfies at least (1− ε)|C|
of the constraints in C. To show this, we first note that
all ĉ = ((xip, x

i
q), R) such that either both ψ̂(xip) = d̃i

and ψ̂(xiq) 6= d̃i or both ψ̂(xip) 6= d̃i and ψ̂(xiq) = d̃i,

a unique constraint in C= is violated by ψ̂. Since for
all i ∈ [k], Gi is an ([si, `si], 3, γ)-expander, we derive

that at least

k∑
i=1

γ · 3 · |Y i| = 3γ

k∑
i=1

|Y i| constraints in

C= are violated by ψ̂. Thus, 3γ

k∑
i=1

|Yi| < δ|Ĉ|, which

implies that

k∑
i=1

|Yi| ≤
δ

3γ
|Ĉ|. Let us now denote by CY

the set of all constraints c = ((xi, xj), R) ∈ C such that
gi(c) ∈ Y i or gj(c) ∈ Yj . Then, since for all i ∈ [k], gi

is an injective function, we have that |CY | ≤
k∑
i=1

|Yi|,



and thus we derive that |CY | ≤
δ

3γ
|Ĉ|. Notice that for

all c ∈ C \ CY that is violated by ψ, there is a unique

constraint in C? that is also violated by ψ̂. Thus, the
number of constraints in C\CY that are violated by ψ is

smaller than δ|Ĉ|. Overall, we conclude that ψ violates

less than δ|Ĉ|+ |CY | ≤ (1 +
1

3γ
)δ|Ĉ| ≤ 4`(1 +

1

3γ
)δ|C|

constraints in C. Since δ =
ε

4`(1 + 1
3γ )

, we conclude

that ψ violates less than ε|C| constraints in C. This
concludes the proof of the lemma.

We now turn to prove the hardness of ε-gap-
BCSP3.

Lemma 4.4. Assuming PIH, there exists an ε > 0 such
that ε-gap-BCSP3 is W[1]-hard.

Proof. By Lemma 4.3, we have that there exists an ε > 0
such that ε-gap-BCSP4 is W[1]-hard. To prove that
the lemma is correct, we present a reduction from ε-
gap-BCSP4 to δ-gap-BCSP3 where δ = ε/15. For
this purpose, let I = (X,D, C) be an instance of ε-gap-

BCSP4. Then, we construct an instance Î = (X̂, D̂, Ĉ)

of δ-gap-BCSP3 as follows. First, define X̂ = X ∪X ′
where X ′ = {x′1, x′2, . . . , x′k}. Hence, |X̂| ≤ 2k. Now,

let us define D̂. For all i ∈ [k], the domain of xi is
defined as Di ∈ D, and the domain of x′i is defined as
D′i = {d′ : d ∈ Di}. Now, for all i ∈ [k], let (Ai, Bi)
be a partition of Ci such that |Ai|, |Bi| ≤ 2. Note that
the existence of such a partition follows from the fact
that |Ci| ≤ 4. Then, for all c = ((xi, xj), R) ∈ C,
denote ĉ = ((xi, xj), R) if ((xi, xj), R) ∈ Ai ∩ Aj ,
ĉ = ((xi, x

′
j), R

′ = {(p, q′) : (p, q) ∈ R}) if ((xi, xj), R) ∈
Ai ∩ Bj , ĉ = ((x′i, xj), R

′ = {(p′, q) : (p, q) ∈ R}) if
((xi, xj), R) ∈ Bi ∩ Aj and ĉ = ((x′i, x

′
j), R

′ = {(p′, q′) :
(p, q) ∈ R}) otherwise. Define C? = {ĉ : c ∈ C}. We
now define a set of equality constraints on each pair of
copies of the variables. Define C= = {((xi, x′i), {(d, d′) :

d ∈ Di}) : i ∈ [k]}. Finally, set Ĉ = C? ∪ C=.

Clearly, every variable in X̂ occurs in at most three
constraints in Ĉ, and the construction can be performed
in polynomial time.

To prove that the reduction is correct, we argue
that if I is satisfiable then so is Î and conversely, if Î
admits an evaluation that satisfies at least (1 − δ)|Ĉ|
constraints, then I admits an evaluation that satisfies
at least (1− ε)|C| constraints.

Suppose that I admits an evaluation ψ that satisfies
all of the constraints. Then, we have that Î also admits
an evaluation ψ̂ that satisfies all of the constraints.
Indeed, we simply define ψ̂ by setting ψ̂(xi) = ψ(xi)

and ψ̂(x′i) = ψ(xi)
′ for all i ∈ [k].

Next, suppose that Î admits an evaluation ψ̂ that
satisfies at least (1 − δ)|Ĉ| constraints. We define an
evaluation ψ for I as follows. For all i ∈ [k], we set

ψ(xi) = ψ̂(xi). We claim that ψ satisfies at least
(1 − ε)|C| of the constraints in C. To show this, we

denote Y = {xi ∈ X : ψ̂(xi) 6= ψ̂(x′i)}. Since ψ̂ violates

less than δ|Ĉ| constraints, we have that |Y | < δ|Ĉ|.
Let CY denote the subset of constraints of C where at
least one variable of Y occurs. Note that since every
variable in X occurs in at most four constraints in C,
we have that |CY | ≤ 4|Y | ≤ 4δ|Ĉ|. Moreover, note
that for every constraint ĉ ∈ C? \ CY that is satisfied

by ψ̂ is also satisfied by ψ. Since ψ̂ violates less than
δ|Ĉ| constraints in total, we have that ψ̂ also violates

less than δ|Ĉ| constraints from C? \ CY . Thus, we

have that ψ violates less than 5δ|Ĉ| constraints from C.
Since every variable occurs in at least one constraint,
we have that |Ĉ| = |C?| + |C=| = |C| + |X| ≤ 3|C|.
We thus conclude that violates less than 15δ|C| = ε|C|
constraints from C. This concludes the proof of the
lemma.

4.4 Proof of Theorem 1.3 We now translate Hy-
pothesis 1 in terms of PSI. For this purpose, we define
the promise problem ε-gap-PSI as PSI where the input
instance is promised to either be a yes-instance, or has
the property that for every subgraph G′ of G with at
least (1 − ε)|E(G)| edges, there does not exist a color-
ful mapping of G′ into H. It is straightforward to see
that if ε-gap-BCSP is W[1]-hard, then ε-gap-PSI is
W[1]-hard as well.

Lemma 4.5. Assuming PIH, there exists an ε > 0 such
that ε-gap-PSI is W[1]-hard.

We remark that it is also straightforward to see that
if ε-gap-PSI is W[1]-hard, then ε-gap-BCSP3 is W[1]-
hard, and hence ε-gap-BCSP is W[1]-hard as well.

Finally, we ready to prove the correctness of Theo-
rem 1.3.

Proof. [Proof of Theorem 1.3] Suppose that there exists
an ε > 0 for which there does not exist an FPT algorithm
for ε-gap-PSI. Let δ = δ(ε) be defined according to
Lemma 3.15. We claim that A-DOCT does not admit
a (1 + δ)-approximation algorithm that runs in time
f(k) · nO(1) for any function f . By Lemma 4.5 and
Corollary 3.1, we would thus conclude the correctness
of Theorem 1.3. Suppose, by way of contradiction,
that our claim is false. Then, let B be a (1 + δ)-
approximation algorithm for A-DOCT that runs in
time f(k) · nO(1) for some function f . We define an
algorithm, Algorithm A as follows. Given an instance



(H,G, col) of PSI, it constructs the instance (D, k, `, w)
of A-DOCT as described in Section 3.5, and calls
Algorithm B with (D, k, `, w) as input. Then, if B
outputs No, then A outputs No, and otherwise A
outputs Yes. By Observations 3.13 and 3.14, Algorithm
A runs in time f(|E(H)|) · |I|O(1) where |I| is the size
of the input instance. On the one hand, by Lemma
3.14, if Algorithm A is given as input a yes-instance
of PSI, then it constructs a yes-instance of A-DOCT.
Next, since B is a (1 + δ)-approximation algorithm for
A-DOCT, Algorithm A outputs Yes. On the other
hand, suppose that Algorithm A is given as input an
instance (H,G, col) of PSI for which there does not
exist a subgraph G′ of G with at least (1 − ε)|E(G)|
edges such that there exists a colorful mapping of G′

into H. By Lemma 3.15, Algorithm A constructs an
instance (D, k, `, w) of A-DOCT which does not admit
a (1+δ)-approximate solution. Then, since B is a (1+δ)-
approximation algorithm for A-DOCT, Algorithm A
outputs No. We have thus reached a contradiction to
the choice of ε. This concludes the proof of Theorem 1.3.

5 Conclusions

Our results on Directed Odd Cycle Transver-
sal raise a few natural questions. The first question
is whether one can improve on the approximation fac-
tor of 2 in Theorem 1.2 or strengthen the inapprox-
imability result in Theorem 1.3 to show that even such
an improvement is unlikely. Secondly, although Theo-
rem 1.1 implies that DOCT is unlikely to have a kernel
of any size, our FPT-approximation algorithm implies
that DOCT does have a 2-approximate kernel of expo-
nential size (see Proposition 3.2, [32]). Therefore, an
exciting new challenge related to DOCT is to deter-
mine whether it has a c-approximate kernel of polyno-
mial size for some constant c and if so, to find the small-
est such constant. Note that Theorem 1.3 also rules out
a (1 + ε)-approximate kernel (for some ε > 0) of any
size for DOCT. We conclude by pointing out that the
parameterized complexity of the Directed Multicut
problem where the number of terminal pairs is 3, re-
mains open. As was the case for DOCT, it is quite
likely that an FPT algorithm or a W-hardness proof for
this problem would require new insights into the struc-
ture of directed cuts.
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