4 research outputs found

    A likelihood ratio analysis of digital phase modulation

    Get PDF
    Bibliography: p. 180-188.Although the likelihood ratio forms the theoretical basis for maximum likelihood (ML) detection in coherent digital communication systems, it has not been applied directly to the problem of designing good trellis-coded modulation (TOM) schemes. The remarkably simple optimal receiver of minimum shift keying (MSK) has been shown to result from the mathematical simplification of its likelihood ratio into a single term. The log-likelihood ratio then becomes a linear sum of metrics which can be implemented as a so-called simplified receiver, comprising only a few adders and delay elements. This thesis project investigated the possible existence of coded modulation schemes with similarly simplifying likelihood ratios, which would have almost trivially simple receivers compared to the Viterbi decoders which are typically required for maximum likelihood sequence estimation (MLSE). A useful notation, called the likelihood transform, was presented to aid the analysis of likelihood ratios. The work concentrated initially on computer-aided searches, first for trellis codes which may give rise to simplifying likelihood ratios for continuous phase modulation (CPM), and then for mathematical identities which may aid in the simplification of generic likelihood ratios for equal-energy modulation. The first search yielded no simplified receivers, and all the identities produced by the second search had structures similar to the likelihood ratio of MSK. These observations prompted a formal proof of the non-existence of simplified receivers which use information from more than two symbols in their observation period. This result strictly bounds the error performance that is possible with a simplified receiver. It was also proved that simplified receivers are only optimal for modulation schemes which use no more than two pairs of antipodal signals, and that only binary modulation schemes can have simplified receivers which use information from all the symbols in their observation period

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done

    Current Situation and Development Trend of Mobile Communication Systems

    Get PDF
    This paper introduces the development background of mobile communication and the development of mobilecommunication. It introduces the application principle, network structure, main technology, the advantages anddisadvantages of the three generations of mobile communication system respectively, and introduces the currentthird generation mobile communication system, including its technical support and research direction, analysis andcomparison of the European WCDMA system, the United States CDMA2000 system and China's TD-SCDMA systemtechnical characteristics. Finally, the development trend and prospect of future mobile communication system arediscussed
    corecore