1,017,172 research outputs found
Reliability and structural integrity
An analytic model is developed to calculate the reliability of a structure after it is inspected for cracks. The model accounts for the growth of undiscovered cracks between inspections and their effect upon the reliability after subsequent inspections. The model is based upon a differential form of Bayes' Theorem for reliability, and upon fracture mechanics for crack growth
Structural reliability prediction of a steel bridge element using dynamic object oriented Bayesian Network (DOOBN)
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method
Reliability and risk assessment of structures
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods
Structural reliability of electrical objects. Theory and examples of solving tasks
Structural reliability of energy objects is one of the most important topics of study in the study of specialty disciplines in the field of Power Engineering, Electrical Engineering and Electromechanics. Students in the specialty "Renewable Energy and High Voltage Engineering and Electrophysics" should have a clear understanding of the nature of structural redundancy issues, be able to evaluate the actual level of reliability through appropriate analysis and know the ways and means of ensuring trouble–free operation of power systems, subsystems and objects of renewable energy
Metamodel-based importance sampling for structural reliability analysis
Structural reliability methods aim at computing the probability of failure of
systems with respect to some prescribed performance functions. In modern
engineering such functions usually resort to running an expensive-to-evaluate
computational model (e.g. a finite element model). In this respect simulation
methods, which may require runs cannot be used directly. Surrogate
models such as quadratic response surfaces, polynomial chaos expansions or
kriging (which are built from a limited number of runs of the original model)
are then introduced as a substitute of the original model to cope with the
computational cost. In practice it is almost impossible to quantify the error
made by this substitution though. In this paper we propose to use a kriging
surrogate of the performance function as a means to build a quasi-optimal
importance sampling density. The probability of failure is eventually obtained
as the product of an augmented probability computed by substituting the
meta-model for the original performance function and a correction term which
ensures that there is no bias in the estimation even if the meta-model is not
fully accurate. The approach is applied to analytical and finite element
reliability problems and proves efficient up to 100 random variables.Comment: 20 pages, 7 figures, 2 tables. Preprint submitted to Probabilistic
Engineering Mechanic
Structural reliability analysis of laminated CMC components
For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution
Meta-models for structural reliability and uncertainty quantification
A meta-model (or a surrogate model) is the modern name for what was
traditionally called a response surface. It is intended to mimic the behaviour
of a computational model M (e.g. a finite element model in mechanics) while
being inexpensive to evaluate, in contrast to the original model which may take
hours or even days of computer processing time. In this paper various types of
meta-models that have been used in the last decade in the context of structural
reliability are reviewed. More specifically classical polynomial response
surfaces, polynomial chaos expansions and kriging are addressed. It is shown
how the need for error estimates and adaptivity in their construction has
brought this type of approaches to a high level of efficiency. A new technique
that solves the problem of the potential biasedness in the estimation of a
probability of failure through the use of meta-models is finally presented.Comment: Keynote lecture Fifth Asian-Pacific Symposium on Structural
Reliability and its Applications (5th APSSRA) May 2012, Singapor
Metamodel-based importance sampling for the simulation of rare events
In the field of structural reliability, the Monte-Carlo estimator is
considered as the reference probability estimator. However, it is still
untractable for real engineering cases since it requires a high number of runs
of the model. In order to reduce the number of computer experiments, many other
approaches known as reliability methods have been proposed. A certain approach
consists in replacing the original experiment by a surrogate which is much
faster to evaluate. Nevertheless, it is often difficult (or even impossible) to
quantify the error made by this substitution. In this paper an alternative
approach is developed. It takes advantage of the kriging meta-modeling and
importance sampling techniques. The proposed alternative estimator is finally
applied to a finite element based structural reliability analysis.Comment: 8 pages, 3 figures, 1 table. Preprint submitted to ICASP11
Mini-symposia entitled "Meta-models/surrogate models for uncertainty
propagation, sensitivity and reliability analysis
Probabilistic simulation of uncertainties in thermal structures
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments
- …
