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Abstract—Different from conventional methods for structural 
reliability evaluation, such as, first/second-order reliability 
methods (FORM/SORM) or Monte Carlo simulation based on 
corresponding limit state functions, a novel approach based on 
dynamic objective oriented Bayesian network (DOOBN) for 
prediction of structural reliability of a steel bridge element has 
been proposed in this paper. The DOOBN approach can 
effectively model the deterioration processes of a steel bridge 
element and predict their structural reliability over time. This 
approach is also able to achieve Bayesian updating with observed 
information from measurements, monitoring and visual 
inspection. Moreover, the computational capacity embedded in 
the approach can be used to facilitate integrated management 
and maintenance optimization in a bridge system. A steel bridge 
girder is used to validate the proposed approach. The predicted 
results are compared with those evaluated by FORM method. 

Keywords-structural reliability; limit state functions;Dynamic 
Object Oriented Bayesian Network (DOOBN) 

I.  INTRODUCTION  

As bridges are regarded as critical components of a 
transport network, the safety of bridges is crucial to people’s 
daily life and to the national economy. Structural reliability is 
an accurate and commonly used measure of the safety of a 
bridge as well as its elements, which indicates the failure 
probability can be defined through the limit state functions. 
Many structural design codes are based on structural reliability, 
such as, load and resistance factor design (LRFD). To date, a 
large amount of research work has been done to evaluate safety 
of bridge structures based on time-variant structural reliability 
[1-3]. Furthermore, it is of importance to predict structural 
reliability of a bridge structure in the future for the purpose of 
bridge life-time management optimization [4-6].Although most 
existing bridge life-time management optimizations are based 

on condition states , it is expected time-dependent structural 
reliability will play an important role in optimizing bridge life-
time management in the near future[7]. 

Conventional bridge structural reliability is evaluated 
through approximated methods, such as, first/second-order 
reliability methods (FORM/SORM), Monte Carlo simulation 
(MCS) and Response Surface Modes (RSM).This paper 
proposes a novel approach for structural reliability prediction 
in a steel bridge element based on dynamic objective oriented 
Bayesian network (DOOBN). DOOBN is the extension of 
Bayesian Network (BN), which has been widely used in many 
areas such as risk assessment and reliability [8-10]. In contrast 
to the previous research, the proposed DOOBN approach can 
effectively model deterioration processes of a steel bridge 
element caused by corrosion, and predict its structural 
reliability over time. Another advantage of the proposed 
approach is the ability to achieve the Bayesian updating with 
observed information from measurements, monitoring and 
visual inspection. In addition, the implementation of the 
DOOBN approach in software facilitates integrated bridge 
management system for the purpose of maintenance 
optimization. 

The rest of this paper is organised as follows. Brief 
introduction of BN theory and its dynamic object oriented 
representation are given in Section 2. Fundamental knowledge 
about deterioration mechanisms of a steel bridge element is 
presented in Section 3. The DOOBN based approach for bridge 
structural reliability prediction is illustrated in Section 4, which 
consists of modelling of structural reliability and corrosion 
deterioration processes and parameters estimations. 
Furthermore, the proposed DOOBN approach is demonstrated 
and validated through a steel bridge girder (Section 5). The 
results are compared with the ones obtained from an 



 
Figure2. A simplified BN class and its instantiation  

Figure3. A simple three-slice DOOBN 

approximate method (FORM). Finally, Section 6 gives the 
conclusions and future work.  

II. BN THEORY 

      According to Jensen and Nielsen[11], a BN is a 
probabilistic model in the form of directed acyclic graphs 
(DAG) with the directed edges and a table of conditional 
probabilities of each variable on all its parents. Fig.1 gives a 
simple example of BN. Each node represents a probability 
distribution of a variable, which may in principle be 
continuous states or discrete states. Nodes X2 and X3 with 
arrows directed from other nodes are called child nodes, and 
they have a common parent node X1. Nodes without any 
arrows directed into them are called root nodes. An arrow 
between two nodes X1 and X2 indicates conditional 
dependence between the two variables that are represented 
by the two nodes. The dependence relationships are 
represented by a set of conditional probability distributions 
(CPDs). For instance, the probability of a dependent 
variable X2 being in a particular state given for each state of 
variable X1 is expressed as P(X2| X1). Prior probability tables 
or functions are held by root nodes. 

 
Figure1. A simple BN consisting of three variables 

   As the probability of each variable is defined conditional on 
its parents, the joint probability of this network p{X1, X2, X3} is 
specified as a product of these conditional probabilities 



where and are conditional probabilities 
given X1, respectively, and is prior probability. 
Moreover, with the assumptions of Markov property and 
conditional independence (d-separation[12]), the joint 
probability for any BN is given as 

          (2)    

where Pa(Xi) is the set of parents of node Xi. One distinctive 
advantage of BN is the inference ability for calculation of 

beliefs of events based on new observed evidence. The beliefs 
(probabilities) are updated in accordance with observation 
using Bayesian updating. Assume an evidence e is observed, 
and then we have 

                                             (3) 

As an extension of conventional BN, an Object Oriented 
Bayesian Network (OOBN) contains, in addition to the usual 
nodes, instance nodes[13]. In an OOBN, a physical or an 
abstract entity, or a relationship between two entities can be all 
modelled as an object. The object represents either a node or 
an instantiation of a network class (instance nodes). An 
example BN class is shown in Fig.2, where input nodes are 
ellipses with shadow dashed and output nodes are ellipses with 
shadow bold line borders. An instantiation of this network 
class is also given in the Fig.2, which has one input C, and two 
outputs A and B. 

To address temporal behaviour of OOBN, time slices are 
added to represent each period of interest so that OOBN is 
changed into DOOBN. Fig.3 shows a three-slice DOOBN. 
The input comes from output in previous time slice, and 
temporal behaviour can be described. 

III. DETERIORATION OF STEEL BRIDGE ELEMENTS 

In light of bridge elements made of steel, the most common 
cause of deterioration is corrosion since all structural metals 
suffer from corrosion. The corrosion can lead to cracking 
(fracture), yielding or bucking, bending or distortion, and 
slipping, which can result in stress concentration, change in 
geometric parameters, and a build-up of the corrosion 
products. Consequently, the bridge reliability decreased over 
time. As much as a steel bridge girder is concerned, corrosion 
can cause a reduction in the cross-section area. Furthermore, 
the reduction of the web area will result in the shear capacity 
loss of the structure and the reduction of the plastic section 
modulus will result in the moment capacity loss[6]. 



 

Figure 4.BN model of a steel girder considering both shear and 
moment 

 
Figure 5.BN model for generic limit state function 

For steel bridge elements, there are many factors that can 
influence the propagation of corrosion and also many different 
forms of corrosion, such as, pitting, crevice, galvanic and stress 
corrosion. However, only uniform corrosion is considered in 
this study. Current available data are not sufficient to formulate 
analytical models. Therefore, it is only possible to use 
approximate empirical formulas. Normally, if effects of paint 
and coating are not considered, a common agreement is to use 
a power function to describe corrosion propagation. An 
exponential function is given as [14]. 

                                                (4) 

where C is average corrosion penetration from corrosion loss 
after t years in micrometers (10-6 m), A is the corrosion loss 
after one year, and B is a regression coefficient numerically 
equal to the slope of Eq 4 in log-log plot. Both A and B are 
based on the environment and the type of steel. For instance, in 
term of carbon steel and rural environment A=34 with 
coefficient of variation equal 0.09, and B= 0.65 with coefficient 
of variation equal 0.10[14].Based on Eq 4, new geometric 
parameters, such as, plastic section area and web area could be 
recalculated for the purpose of structural reliability estimation 

IV. DOOBN BASED APPROACH FOR STRUCTURAL 

RELIABILITY PREDICTION OF  STEEL BRIDGE ELEMENTS 

A. DOOBN formulation 

 Structural reliability aspect 

This section aims to model structural reliability of a steel 
bridge element based on BN. Generally, each bridge element 
may have more than one failure mode, for instance, failure 
modes of shear and moment are often considered together. 
Overall structural reliability of a steel bridge element is 
calculated based on its structural reliabilities in each failure 
mode, and normally, series relationship is assumed among 
different failure modes. Fig.4 gives an example of a bridge 
element with failure modes of shear and moment. 

Consider a generic form of limit state function g that 
describes all types of failure modes as a function of steel yield 
strength Fy, a set of parameters S relating to section modulus 
or web area, a set of parameters Ld relating to dead load and a 
set of parameters Ll relating to live load. This limit state 
function g is expressed by the difference between resistance R 
and load L, and is written in generic form as Eq. (5). The limit 
state function g can represent all types of failure modes. For 
example, for moment of a steel girder, Fy denotes steel yield 
strength, S denotes a set of parameters relating to plastic 
section modulus, Ld denotes a set of parameters relating to 
moment due to dead load, and Ll denotes a set of parameters 
relating to moment owing to live load. 

                          (5) 

The generic limit state function is formulated as BN in 
Fig.5.The links between different nodes represent conditional 
relationship between different nodes. Since each node 
represents vectors of variables, the BN here can be further 
extended to model any limit state function in details. 
Therefore, the BN here is a generic model and can be used for 

the purpose of accurate structural reliability calculation of 
steel bridge elements. In addition, the BN model automates 
Bayesian updating efficiently based on the observations of 
each node. Moreover, the BN model enables bi-directional 
Bayesian updating, which means once an observation of one 
node is available, the whole BN will be updated automatically. 
The inclusion of observations will be discussed in details in 
next corrosion deterioration aspect. 

 Corrosion deterioration aspect 

This section aims to model deterioration processes of steel 
bridge elements based on DOOBN. If the live load is assumed 
to be time-invariant, only the deterioration of resistance 
contributes to time-dependent structural reliability of a steel 
bridge element. According to the discussion in Section 3, the 
most common cause of deterioration of resistance is corrosion. 
Furthermore, corrosion deterioration process can be described 
by a power function (Eq. (4)). In this research, the corrosion 
deterioration process is modelled as a discrete time process. 
The DOOBN modelling is given in Fig.6, where C, as an 
output, is corrosion loss (corrosion penetration depth) after t 
years, A is the corrosion loss after one year, and B is a 
regression coefficient numerically. The nodes T-1 and T 
represent time variables in two consecutive time slices and are 
assigned as input and output, respectively. The time variable T 
is conditional on previous time variable T-1.By introducing 
the time variable T, the commonly held Markovian assumption 
in most of BN applications is released in this research. The 
time-variant corrosion deterioration is implemented by 
connecting the object of corrosion deterioration in each time 
slice.  

The DOOBN model is capable of computational and robust 
Bayesian updating when observation information (new 
evidence) is available. Observation information can be 
obtained through visual inspection, NDT (Non-Destructive 
Technology) and SHM (Structural health monitoring).Visual 
inspection provides straightforward information for bridge 



 
 

Figure 6.DOOBN modelling for corrosion deterioration process 

  
Figure 7.DOOBN modelling for corrosion deterioration process including an observation 

                           (6) 

 

engineers, while both NDT and SHM provide indirect 
information which need to be further processed. In terms of 
corrosion deterioration process in this research, observation 
relating to corrosion loss can be used to update the prediction 
of structural reliability. The inclusion of an observation node 
in the DOOBN model is shown in Fig.7. This observation 
node Ob could be a discrete random variable with two states 
“corrosion” and “no corrosion” or a continuous random 
variable, for instance, a measured corrosion penetration depth. 
In the previous case, a probability of detection (PoD) model is 
adopted to characterize the observation information; in the 
latter case, measurement error is utilised to characterize the 
observation information. 

B. Parameters estimation 

 
After the DOOBN formulation, this section is implemented 

with the purpose of estimation of conditional probabilities 
tables (CPTs) and priori probabilities of root nodes for the 
DOOBN, which could be the most difficult. However, before 
the estimation, it is necessary to discretize continuous nodes 
into discrete nodes. Owing to the limitation of current 
inference algorithms and slow convergence rate, continuous 
nodes cannot be dealt with efficiently. Furthermore, current 
inference algorithms cannot handle the situation adequately 
that continuous parent nodes have discrete children nodes, 
which actually does happen in this research. Therefore, 
continuous variables should be replaced by a finite number of 
discrete states. Univariate discretization is chosen in this paper 
and is carried out sequentially from parent nodes to children 
nodes. Equal length intervals are chosen. Next, the 
discretization interval length is determined within the probable 
values range to make sure that the discretized distribution 
represents the original continuous distribution in a reasonable 

and accurate way. The probability of each discrete state is 
assigned with cumulative distribution probability over the 
corresponding discretization interval. 

 Estimation of CPTs and prior probabilities 

In this research, deterministic equations are used to estimate 
the CPTs for the proposed DOOBN model. Since modelling of 
structural reliability is based on deterministic limit state 
functions, conditional probabilities could be derived from the 
equations directly, such as, Eq. (5). In this case, the relationship 
described by the deterministic equation, is directly encoded 
into CPTs, which means the conditional relationships are 
deterministic. Moreover, the knowledge of steel corrosion in 
bridge deterioration (Eq. (4)) is also utilised to estimate the 
conditional probabilities relating to variables for modelling of 
corrosion deterioration processes. In light of observations, 
CPTs can be estimated through a probability of detection 
(PoD) model or measurement error. In addition to deterministic 
equations, knowledge from existing literatures can be used for 
estimation of CPTs and prior probabilities. For instance, the 
prior probabilities of A and B in Eq. (4) are obtained from the 
literature[14]. Finally, overall structural reliability of a steel 
bridge element is conditional on structural reliabilities of 
different failure modes with an assumed series relationship 
among different failure modes. 

V. APPLICATION 

A. DOOBN modelling 

The proposed DOOBN model is applied to a classical 
example of a steel bridge girder for structural reliability 
prediction. The results obtained from the proposed approach 
are compared with results obtained from some approximate 
methods, for instance, first order reliability method (FORM). 



           Figure 9.Comparison of reliability indexes obtained from DOOBN and 
FORM 

 
Figure 8.Shear structural reliability of a steel girder as a DOOBN

The automatic Bayesian updating ability is also examined by 
integrating observation into structural reliability prediction. On 
behalf of this example, a limit state equation for shear failure of 
a steel bridge girder was chosen from a PhD thesis written by 
Estes[6]. To take into account temporal bridge deterioration, 
the limit state function is rewritten into Eq. (6), where dw is the 
depth of the web; Fy is yield strength of steel in girders; tw is 
the thickness of the web; dcorr is the depth of corrosion at the 
considered time; t is time variable; A is the corrosion loss after 
one year; B is a regression coefficient numerically; λconc is 
uncertainty factor for weight of concrete on deck; λasph is 
uncertainty factor for weight of asphalt on deck; λsteel is 
uncertainty factor for weight of steel girders; Vtrk-i uncertainty 
factor for live load shear in girder; DFi is uncertainty for live 
load girder distribution; Ibeam uncertainty factor for impact on 
girder. To facilitate the CPTs estimation in this example, 
several new variables, R, L, Vdl and Vll, are introduced, and the 
limit state function (Equation 7) is rewritten into Eqs. (7-12). 

                      (7) 

                                     (8) 

                                     (9) 

           (10) 

                    (11) 

                                    (12) 

   The DOOBN model for this application, including 
corrosion inspection results Ob, is given in Fig. 8. In this 
example, the observations can be either visual inspection for 
corrosion or measurements of depth of corrosion. In the former 
case, the PoD model (D is the event of corrosion indication of 
the steel girder) is considered as follows: 

  (13) 

The probability of an indication of corrosion is conditional 
on true corrosion depth. Therefore, the probability of no 
indication of corrosion at time t is expresses as 1-PoD (dcorr). In 
the later case, the measurements of corrosion depth at time t are 
assumed to be the true corrosion depth plus Normal 
distribution with =0 and σ=1. 

As most of the variables are defined in continuous states, 
the implementation of discretization is necessary. Equal length 
discretization interval is chosen in this case study, and the 
probabilities of each discrete state are assigned with cumulative 
distribution function (CDF) over the corresponding interval. 
With discretized variables, the estimation of CPTs can be 
estimated based on deterministic equations above. By sampling 
the intervals of the parent nodes and inserting the sampled 
values into the equations, a large number of function values are 
available for each configuration of the parents’ sampled values. 
By taking the relative frequency occurrence of the function 
values in each interval of the specified child node, the CPTs for 
each child node are obtained. 

B. Numerical Results 

By implementing inference algorithms, the reliability 
indexes obtained from DOOBN are compared with those 
obtained from FORM (Fig.9). The comparison demonstrates 
the accuracy of the proposed DOOBN model. In addition, the 
proposed DOOBN model facilitates Bayesian updating of all 
the variables within the model based on inspection results. To 
validate updating ability of this model, reliability indexes are 
updated based on the visual inspection results in Table I and 
the measurements results of corrosion depth in Table II, 
respectively. Fig.10 represents the resulting posterior 
reliability index based on visual inspection. The updated 
reliability indexes based on the measurements of corrosion 
depth are shown on Fig.11. Fig.10 and 11 illustrate automatic 
updating ability of the proposed DOOBN model, which brings 
in more accurate prediction results for the purpose of 
maintenance optimization. 



                 Figure 10.Updated reliability indexes with visual inspection results 

 
Figure 11.Updated reliability indexes with measurements of corrosion depth 

TABLE I.  VISUAL INSPECTION 

 
 
 

TABLE II.  MEASUREMENT RESULTS OF CORROSION DEPTH 

 

VI. CONCLUSION 

A DOOBN-based approach has been proposed in this paper 
to predict structural reliability of steel bridge elements. The 
approach includes DOOBN formulation and parameters 
estimation. A steel bridge girder has been selected to validate 
the applicability of the proposed approach. It has been 
confirmed that the DOOBN-based approach can accurately 
predict structural reliability of this bridge element. The 
approach is also able to model the temporal behaviour of the 
deterioration processes of steel bridge elements caused by 
corrosion. In addition, the proposed approach automates 
computational and robust Bayesian updating with observation 
information. The potential application includes bridge health 
prediction and integrated management for bridge maintenance 
optimization. The applicability of the proposed approach will 
further investigated with a focus on other failure modes, for 
instance, moment, and multiple steel bridge elements. We 
believe the proposed approach can be also extended to predict 
the structural reliability of a whole steel bridge system. 
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InspectionTimes (year) 5 10 15 20 25 30 35 40 45 

Indication of corrosion N N N Y Y Y Y Y Y 

MeasurementTimes 
(years) 

5 10 15 20 25 30 35 40 45 

Measurements(10-6m) 95 125 145 197 287 361 503 616 799 


