4 research outputs found

    Structural identification of unate-like genetic network models from time-lapse protein concentration measurements

    Full text link
    We consider the problem of learning dynamical models of genetic regulatory networks from time-lapse measurements of gene expression. In our previous work [1], we described a method for the structural and parametric identification of ODE models that makes use of concurrent measurements of concentrations and synthesis rates of the gene products, and requires the knowledge of the noise statistics. In this paper we assume all these pieces of information are not simultaneously available. In particular we propose extensions of [1] that make the method applicable to protein concentration measurements only. We discuss the performance of the method on experimental data from the network IRMA, a benchmark synthetic network engineered in yeast Saccharomices cerevisiae

    Structural identification of unate-like genetic network models from time-lapse protein concentration measurements

    No full text
    none4Porreca Riccardo; Cinquemani Eugenio; Lygeros John; Ferrari Trecate GiancarloPorreca, Riccardo; Cinquemani, Eugenio; Lygeros, John; FERRARI TRECATE, Giancarl

    Structural Identification of Unate-Like Genetic Network Models from Time-Lapse Protein Concentration Measurements

    No full text
    We consider the problem of learning dynamical models of genetic regulatory networks from time-lapse measurements of gene expression. In our previous work [Porreca et al,Bioinformatics,2010], we described a method for the structural and parametric identification of ODE models that makes use of concurrent measurements of concentrations and synthesis rates of the gene products, and requires the knowledge of the noise statistics. In this paper we assume all these pieces of information are not simultaneously available. In particular we propose extensions of [Porreca et al,Bioinformatics,2010] that make the method applicable to protein concentration measurements only. We discuss the performance of the method on experimental data from the network IRMA, a benchmark synthetic network engineered in yeast Saccharomices cerevisiae

    Biophysical modeling of bacterial restriction-modification systems

    Get PDF
    РСстрикционо-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½ΠΈ (Π -М) ΠΈ CRISPR-Cas систСми користС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ΅ Π·Π° ΠΎΠ±Π°Π²Ρ™Π°ΡšΠ΅ основнС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ – ΠΎΠ΄Π±Ρ€Π°Π½Π΅ прокариотскС Ρ›Π΅Π»ΠΈΡ˜Π΅ ΠΎΠ΄ странС Π”ΠΠš. Π—Π° Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° Π -М систСма Π’ΠΈΠΏΠ° II ΠΈ CRISPR-Cas Π’ΠΈΠΏΠ° I-E су постављСни Ρ‚Π΅Ρ€ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΡ˜Π΅ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΅ΠΊΡΠΏΡ€Π΅ΡΠΈΡ˜Π΅ транскрипата ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°. Π‘ΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΠΌΠΎΠ΄Π΅Π»Π° су ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ особинС Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ Π΅ΠΊΡΠΏΡ€Π΅ΡΠΈΡ˜Π΅ систСма ΠΏΠΎ ΠΏΠΎΠΊΡ€Π΅Ρ‚Π°ΡšΡƒ ΡšΠΈΡ…ΠΎΠ²Π΅ активности Ρƒ Ρ›Π΅Π»ΠΈΡ˜ΠΈ којС Π²Π΅Ρ€ΠΎΠ²Π°Ρ‚Π½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π°Ρ˜Ρƒ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅ Π΅Π²ΠΎΠ»ΡƒΡ‚ΠΈΠ²Π½ΠΎΠ³ дизајна ΡšΠΈΡ…ΠΎΠ²Π΅ Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅. ΠŸΡ€Π΅Ρ†ΠΈΠ·Π½ΠΈΡ˜Π΅, испитано јС: i) ΠΊΠ°ΠΊΠΎ ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Π±Π°Ρ†ΠΈΡ˜Π΅ карактСристичних Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΎΡ€Π½ΠΈΡ… ΡΠ²ΠΎΡ˜ΡΡ‚Π°Π²Π° Π -М систСма AhdI ΠΈ EcoRV ΡƒΡ‚ΠΈΡ‡Ρƒ Π½Π° Ρ‚Ρ€ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°; ii) Π΄Π° Π»ΠΈ Π -М систСм Kpn2I, са Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΎΠΌ Π½Π° Π½ΠΈΠ²ΠΎΡƒ Π΅Π»ΠΎΠ½Π³Π°Ρ†ΠΈΡ˜Π΅ Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΡ˜Π΅, ΠΌΠΎΠΆΠ΅ Π΄Π° ΠΎΠ±Π΅Π·Π±Π΅Π΄ΠΈ ΠΎΡ‡Π΅ΠΊΠΈΠ²Π°Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°; iii) Π΄Π° Π»ΠΈ су ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›Π° сазнања ΠΎ Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ Π -М систСма Esp1396I Π΄ΠΎΠ²ΠΎΡ™Π½Π° Π·Π° Ρ€Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΠΎΠ²Π°ΡšΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ Π΅ΠΊΡΠΏΡ€Π΅ΡΠΈΡ˜Π΅ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π΅ Π½Π° Π½ΠΈΠ²ΠΎΡƒ ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΈΡ… Ρ›Π΅Π»ΠΈΡ˜Π°; iv) ΠΊΠ°ΠΊΠ²Π΅ особинС Π²Π΅Ρ€ΠΎΠ²Π°Ρ‚Π½ΠΎ ΠΈΠΌΠ° Π½Π΅ΠΏΠΎΠ·Π½Π°Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π΅ΠΊΡΠΏΡ€Π΅ΡΠΈΡ˜Π΅ CRISPR-Cas систСма Ρƒ Escherichia coli, ΠΏΡ€Π΅Π΄Π²ΠΈΡ’Π΅Π½Π° ΡƒΠ· прСтпоставку Π΄Π° сС њСгов ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·Π°ΠΌ Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜Π΅ Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΡ˜Π΅ ΠΌΠΎΠΆΠ΅ апроксимирати ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ‚ΡƒΠ°Π»Π½ΠΎ сличним ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Π -М систСма. Показано јС Π΄Π° сва Ρ‡Π΅Ρ‚ΠΈΡ€ΠΈ Π -М систСма, ΠΊΠ°ΠΎ ΠΈ CRISPR-Cas, структурно ΠΈΡΠΏΡƒΡšΠ°Π²Π°Ρ˜Ρƒ условС Π·Π° ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ΅ Π΄Π²Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° – ΠΏΠΎΡ‡Π΅Ρ‚Π½ΠΎ кашњСњС Π΅ΠΊΡΠΏΡ€Π΅ΡΠΈΡ˜Π΅ рСстрикционС Π΅Π½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π·Π΅ Π·Π° Π΅ΠΊΡΠΏΡ€Π΅ΡΠΈΡ˜ΠΎΠΌ мСтилтрансфСразС ΠΈ њСн Π½Π°Π³Π»ΠΈ пораст ΠΊΠ° стационарном ΡΡ‚Π°ΡšΡƒ, Π΄ΠΎΠΊ Π°Π½Π°Π»ΠΈΠ·Π° систСма AhdI ΠΈ EcoRV ΠΏΠΎΠ΄Ρ€ΠΆΠ°Π²Π° ΠΈ Ρ‚Ρ€Π΅Ρ›ΠΈ – нискС Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΡ˜Π΅ Ρƒ стационарном ΡΡ‚Π°ΡšΡƒ. Ова сазнања ΠΎ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΡ… гСнских ΠΌΡ€Π΅ΠΆΠ° ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π°Ρ˜Ρƒ Π±ΠΎΡ™Π΅ Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°ΡšΠ΅ Π²Π΅Π·Π΅ ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ ΡšΠΈΡ…ΠΎΠ²Π΅ структурС ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π΅ ΠΈ Π΄Π°Ρ˜Ρƒ смСрницС Π·Π° дизајн синтСтичких гСнских ΠΊΠΎΠ»Π°.Restriction-modification (R-M) and CRISPR-Cas systems use different mechanisms to perform their main function - defend prokaryotic cells from foreign DNA. Thermodynamic models of transcription regulation and dynamic models of transcript and protein expression were set for four selected Type II R-M systems and a Type I-E CRISPR-Cas. By simulating and analyzing the model dynamics, we identified the properties of the system expression dynamics upon the induction in a cell which may be the principles of the regulation evolutionary design. Specifically, we examined: i) how perturbing of the characteristic regulatory features of the R-M systems AhdI and EcoRV affects the three proposed dynamic principles; ii) if the R-M system Kpn2I, whith regulation at the level of transcription elongation, can provide the expected dynamic properties; iii) if the known regulation of the R-M system Esp1396I is sufficient to reproduce the protein expression dynamics measured on single-cells; iv) which properties are probably found in the unknown expression dynamics of the CRISPR-Cas system in Escherichia coli, predicted under the assumption that its transcription regulation mechanism can be approximated by a similar one from R-M systems. We showed that all four R-M systems, as well as CRISPR-Cas, are able to achieve the two proposed dynamic principles - initial delay of restriction endonuclease with respect to methyltransferase expression and its rapid increase towards steady-state, while analysis of AhdI and EcoRV adds the third principle - low fluctuations in the steady-state. Gained insights into the design of these natural gene networks provide a better understanding of the relationship between their structure and function, as well as guidelines for the design of synthetic gene circuits
    corecore