157 research outputs found

    Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study.

    Get PDF
    Objectives To investigate whether moderate alcohol consumption has a favourable or adverse association or no association with brain structure and function.Design Observational cohort study with weekly alcohol intake and cognitive performance measured repeatedly over 30 years (1985-2015). Multimodal magnetic resonance imaging (MRI) was performed at study endpoint (2012-15).Setting Community dwelling adults enrolled in the Whitehall II cohort based in the UK (the Whitehall II imaging substudy).Participants 550 men and women with mean age 43.0 (SD 5.4) at study baseline, none were "alcohol dependent" according to the CAGE screening questionnaire, and all safe to undergo MRI of the brain at follow-up. Twenty three were excluded because of incomplete or poor quality imaging data or gross structural abnormality (such as a brain cyst) or incomplete alcohol use, sociodemographic, health, or cognitive data.Main outcome measures Structural brain measures included hippocampal atrophy, grey matter density, and white matter microstructure. Functional measures included cognitive decline over the study and cross sectional cognitive performance at the time of scanning.Results Higher alcohol consumption over the 30 year follow-up was associated with increased odds of hippocampal atrophy in a dose dependent fashion. While those consuming over 30 units a week were at the highest risk compared with abstainers (odds ratio 5.8, 95% confidence interval 1.8 to 18.6; P≤0.001), even those drinking moderately (14-21 units/week) had three times the odds of right sided hippocampal atrophy (3.4, 1.4 to 8.1; P=0.007). There was no protective effect of light drinking (1-<7 units/week) over abstinence. Higher alcohol use was also associated with differences in corpus callosum microstructure and faster decline in lexical fluency. No association was found with cross sectional cognitive performance or longitudinal changes in semantic fluency or word recall.Conclusions Alcohol consumption, even at moderate levels, is associated with adverse brain outcomes including hippocampal atrophy. These results support the recent reduction in alcohol guidance in the UK and question the current limits recommended in the US

    Imaging diffusional variance by MRI [public] : The role of tensor-valued diffusion encoding and tissue heterogeneity

    Get PDF
    Diffusion MRI provides a non-invasive probe of tissue microstructure. We recently proposed a novel method for diffusion-weighted imaging, so-called q-space trajectory encoding, that facilitates tensor-valued diffusion encoding. This method grants access to b-tensors with multiple shapes and enables us to probe previously unexplored aspects of the tissue microstructure. Specifically, we can disentangle diffusional heterogeneity that originates from isotropic and anisotropic tissue structures; we call this diffusional variance decomposition (DIVIDE).In Paper I, we investigated the statistical uncertainty of the total diffusional variance in the healthy brain. We found that the statistical power was heterogeneous between brain regions which needs to be taken into account when interpreting results.In Paper II, we showed how spherical tensor encoding can be used to separate the total diffusional variance into its isotropic and anisotropic components. We also performed initial validation of the parameters in phantoms, and demonstrated that the imaging sequence could be implemented on a high-performance clinical MRI system. In Paper III and V, we explored DIVIDE parameters in healthy brain tissue and tumor tissue. In healthy tissue, we found that diffusion anisotropy can be probed on the microscopic scale, and that metrics of anisotropy on the voxel scale are confounded by the orientation coherence of the microscopic structures. In meningioma and glioma tumors, we found a strong association between anisotropic variance and cell eccentricity, and between isotropic variance and variable cell density. In Paper IV, we developed a method to optimize waveforms for tensor-valued diffusion encoding, and in Paper VI we demonstrated that whole-brain DIVIDE is technically feasible at most MRI systems in clinically feasible scan times

    Oxygen and its effects on the developing brain

    Get PDF

    Investigating history of concussion and data from head impact telemetry (xPatch) in relation to neuropsychological outcomes in a sample of adult rugby players in Cape Town

    Get PDF
    While Rugby Union has worldwide popularity, with over 5 million registered and nonregistered players participating every year, the game lends itself to a high incidence of concussion among players. Rugby players, more so than that recorded for any other contact sport, including American Football, are also more frequently exposed to head collisions not resulting in concussion (i.e., subconcussive head injuries). Despite some evidence for a potential association between such injuries and acute neurological and neuropsychological difficulties, which may at times persist among some players, overt symptoms still guide the initial on-field response for further concussion management to be initiated. The aim of this study was threefold: 1) to investigate the relationship between rugby players' history of concussion and neuropsychological outcomes, 2) to explore the use of a head impact telemetry (HIT) device in describing high-impact head collisions (and potentially subconcussive injuries), and 3) to explore the relationship between that HIT data and neuropsychological outcomes. Study 1 investigated differences between non-contact sport participants (n = 23) and rugby players with (Rugby Concussed; n = 31), and without a history of concussion (Rugby Not Concussed; n = 26) in a baseline cognitive assessment. Results showed that at the beginning of the rugby season there were no differences in cognitive abilities at a group level; a more severe concussion history was largely not associated with a poorer performance on these cognitive outcomes. Study 2 was a pilot study utilising the xPatch to objectively capture a rugby player's exposure to head impacts in an amateur rugby team (UCT IRL team; n = 8). Although the majority of impacts captured were of a 'mild' severity, there were many acceleration forces, particularly rotational accelerations, recorded above an injury threshold potentially implicated with concussion. Following from this, Study 3 used a prospective and repeated-measures design with the same UCT IRL team, to evaluate a means for investigating a player's neuropsychological vulnerability to high-impact subconcussive head injuries. Using correlational analyses, the Reliable Change Index (RCI) and head collision data from Study 2, there was a lack of evidence to indicate that player's increased exposure to repeated high-impact head collisions results in a generally poorer neuropsychological performance. However, a number of test practice effects are noted. Combined, these findings suggest that (a) identifying possible enduring neuropsychological difficulties retrospectively is limited, and issues such as test-practice effects and test sensitivity should be considered in future, preferably prospective studies, (b) rugby players are vulnerable to sustaining multiple high-impact subconcussive head injuries and the data suggests utility in including HIT like the xPatch, and (c) that implementing a multi-faceted protocol for monitoring rugby players' that negates a reliance on concussion diagnosis is necessary to better understanding individual recovery trajectories

    Functional and structural substrates of increased dosage of Grik4 gene elucidated using multi-modal MRI

    Get PDF
    Grik4 is the gene responsible for encoding the high-affinity GluK4 subunit of the kainate receptors. Increased dosage of this subunit in the forebrain was linked to an increased level of anxiety, lack of social communication, and depression. On the synaptic level, abnormal synaptic transmission was also reported. The manifestations of this abnormal expression have not been investigated at the circuit level, nor the correlations between those circuits and the abnormal patterns of the behavior previously reported. In this line of work, we aspired to use different non-invasive magnetic resonance imaging (MRI) modalities to elucidate any disturbance that might stem from the increased dosage of Grik4 and how those changes might explain the abnormal behaviors. MRI offers a noninvasive way to look into the intact brain in vivo. Resting-state functional MRI casts light on how the brain function at rest on the network level and has the capability to detect any anomalies that might occur within or between those networks. On the microstructural level, the diffusion MRI is concerned with the underlying features of the tissues, using the diffusion of water molecules as a proxy for that end. Moving more macroscopically, using structural scans, voxel-based morphometry can detect subtle differences in the morphology of the different brain structures. We recorded videos of our animals performing two tasks that have long been linked to anxiety, the open field and the plus-maze tests before acquiring structural and functional scans. Lastly, we recorded blood-oxygenationlevel dependent (BOLD) signals in a different set of animals during electrical stimulation of specific white matter tracts in order to investigate how neuronal activity propagates. Our analysis showed a vast spectrum of changes in the transgenic group relative to the animals in the control group. On the resting-state networks level, we observed an increase in the within-network strength spanning different structures such as the hippocampus, some regions of the cortex, and the hypothalamus. The increased internal coherence or strength in the networks contrasted with a significant reduction in between-networks connectivity for some regions such as parts of the cortex and the hypothalamus, suggesting long-range network decorrelation. Supporting this idea, major white matter (WM) tracts, such as the corpus callosum and the hippocampal commissure, suffered from substantial changes compatible with an important reduction in myelination and/or a decrease in the mean axonal diameter. Macrostructurally speaking, the overexpression of GluK4 subunit had a bimodal effect, with expansion in some cortical areas in the transgenic animals accompanied by a shrinkage in the subcortical regions. Upon stimulating the brain with an electrical current, we noticed a difference in activity propagation between the two hemispheres. In transgenic animals, the evoked activity remained more confined to the stimulated hemisphere, again consistent with an impaired long-range connectivity. The structural changes both, at the micro and macro level, were in tight correlation with different aspects of the behavior including markers of anxiety such as the time spent in the open arms vs the closed arms in the plus-maze test and the time spent in the center vs the corners in the open field test. Our findings reveal how the disruption of kainate receptors, or more globally the glutamate receptors, and the abnormal synaptic transmission can translate into brain-wide changes in connectivity and alter the functional equilibrium between macro-and mesoscopic networks. The postsynaptic enhancement previously reported in the transgenic animals was here reflected in the BOLD signal and measured as an increase in the within-network strength. Importantly, the correlations between the structural changes and the behavior help to put the developmental changes and their behavioral ramifications into context. RESUMEN Grik4 es el gen responsable de codificar la subunidad GluK4 de alta afinidad de los receptores de kainato. El aumento de la dosis de esta subunidad en el prosencéfalo se relacionó con un mayor nivel de ansiedad, falta de comunicación social y depresión. A nivel sináptico, también se informó una transmisión sináptica anormal. Las manifestaciones de esta expresión anormal no se han investigado a nivel de circuito, ni las correlaciones entre esos circuitos y los patrones anormales de la conducta previamente informada. En esta línea de trabajo, aspiramos a utilizar diferentes modalidades de imágenes por resonancia magnética (MRI) no invasivas para dilucidar cualquier alteración que pudiera derivarse del aumento de la dosis de Grik4 y cómo esos cambios podrían explicar los comportamientos anormales. La resonancia magnética ofrece una forma no invasiva de observar el cerebro intacto in vivo. La resonancia magnética funcional en estado de reposo arroja luz sobre cómo funciona el cerebro en reposo en el nivel de la red y tiene la capacidad de detectar cualquier anomalía que pueda ocurrir dentro o entre esas redes. En el nivel microestructural, la resonancia magnética de difusión se ocupa de las características subyacentes de los tejidos utilizando la difusión de moléculas de agua como un proxy para ese fin. Moviéndose más macroscópicamente, utilizando escaneos estructurales, la morfometría basada en vóxeles puede detectar diferencias sutiles en la morfología de las diferentes estructuras cerebrales. Grabamos videos de nuestros animales realizando dos tareas que durante mucho tiempo se han relacionado con la ansiedad, el campo abierto y las pruebas de laberinto positivo antes de adquirir escaneos estructurales y funcionales. Por último, registramos señales dependientes del nivel de oxigenación de la sangre (BOLD) en un grupo diferente de animales durante la estimulación eléctrica de tractos específicos de materia blanca para investigar cómo se propaga la actividad neuronal. Nuestro análisis mostró un amplio espectro de cambios en el grupo transgénico en relación con los animales en el grupo de control. En el nivel de las redes de estado de reposo, observamos un aumento en la fuerza dentro de la red que abarca diferentes estructuras como el hipocampo, algunas regiones de la corteza y el hipotálamo. La mayor coherencia interna o fuerza en las redes contrastó con una reducción significativa en la conectividad entre redes para algunas regiones como partes de la corteza y el hipotálamo, lo que sugiere una descorrelación de redes de largo alcance. Apoyando esta idea, los grandes tractos de materia blanca (WM), como el cuerpo calloso y la comisura del hipocampo, sufrieron cambios sustanciales compatibles con una importante reducción de la mielinización y / o una disminución del diámetro axonal medio. Macroestructuralmente hablando, la sobreexpresión de la subunidad GluK4 tuvo un efecto bimodal, con expansión en algunas áreas corticales en los animales transgénicos acompañada de una contracción en las regiones subcorticales. Al estimular el cerebro con una corriente eléctrica, notamos una diferencia en la propagación de la actividad entre las dos hemiesferas. En los animales transgénicos, la actividad evocada permaneció más confinada al hemisferio estimulado, de nuevo consistente con una conectividad de largo alcance deteriorada. Los cambios estructurales, tanto a nivel micro como macro, estaban en estrecha correlación con diferentes aspectos de la conducta, incluidos marcadores de ansiedad como el tiempo pasado con los brazos abiertos frente a los brazos cerrados en la prueba del laberinto positivo y el tiempo pasado en el centro vs las esquinas en la prueba de campo abierto. Nuestros hallazgos revelan cómo la interrupción de los receptores de kainato, o más globalmente los receptores de glutamato, y la transmisión sináptica anormal pueden traducirse en cambios de conectividad en todo el cerebro y alterar el equilibrio funcional entre las redes macro y mesoscópicas. La mejora postsináptica informada anteriormente en los animales transgénicos se reflejó aquí en la señal BOLD y se midió como un aumento en la fuerza dentro de la red. Es importante destacar que las correlaciones entre los cambios estructurales y elcomportamiento ayudan a contextualizar los cambios en el desarrollo y sus ramificaciones conductuales

    Small Bowel Review: Part II

    Get PDF
    corecore