12,904 research outputs found

    Metrics for ranking ontologies

    Get PDF
    Representing knowledge using domain ontologies has shown to be a useful mechanism and format for managing and exchanging information. Due to the difficulty and cost of building ontologies, a number of ontology libraries and search engines are coming to existence to facilitate reusing such knowledge structures. The need for ontology ranking techniques is becoming crucial as the number of ontologies available for reuse is continuing to grow. In this paper we present AKTiveRank, a prototype system for ranking ontologies based on the analysis of their structures. We describe the metrics used in the ranking system and present an experiment on ranking ontologies returned by a popular search engine for an example query

    Searching and ranking ontologies on the Semantic Web

    Get PDF
    The number of ontologies available online is increasing constantly. Tools that are capable of searching, retrieving, and ranking ontologies are becoming crucial to facilitate ontology search and reuse. In this document, we describe OntoSearch, which is a tool for capturing and searching ontologies on the Semantic web. We also briefly describe AKTiveRank which is used to rank OWL ontologies based on certain ontology-structure analysis.

    SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases

    Get PDF
    The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    Shiva: A Framework for Graph Based Ontology Matching

    Full text link
    Since long, corporations are looking for knowledge sources which can provide structured description of data and can focus on meaning and shared understanding. Structures which can facilitate open world assumptions and can be flexible enough to incorporate and recognize more than one name for an entity. A source whose major purpose is to facilitate human communication and interoperability. Clearly, databases fail to provide these features and ontologies have emerged as an alternative choice, but corporations working on same domain tend to make different ontologies. The problem occurs when they want to share their data/knowledge. Thus we need tools to merge ontologies into one. This task is termed as ontology matching. This is an emerging area and still we have to go a long way in having an ideal matcher which can produce good results. In this paper we have shown a framework to matching ontologies using graphs

    Semantic Heterogeneity Issues on the Web

    Full text link
    The Semantic Web is an extension of the traditional Web in which meaning of information is well defined, thus allowing a better interaction between people and computers. To accomplish its goals, mechanisms are required to make explicit the semantics of Web resources, to be automatically processed by software agents (this semantics being described by means of online ontologies). Nevertheless, issues arise caused by the semantic heterogeneity that naturally happens on the Web, namely redundancy and ambiguity. For tackling these issues, we present an approach to discover and represent, in a non-redundant way, the intended meaning of words in Web applications, while taking into account the (often unstructured) context in which they appear. To that end, we have developed novel ontology matching, clustering, and disambiguation techniques. Our work is intended to help bridge the gap between syntax and semantics for the Semantic Web construction

    Dynamic Discovery of Type Classes and Relations in Semantic Web Data

    Full text link
    The continuing development of Semantic Web technologies and the increasing user adoption in the recent years have accelerated the progress incorporating explicit semantics with data on the Web. With the rapidly growing RDF (Resource Description Framework) data on the Semantic Web, processing large semantic graph data have become more challenging. Constructing a summary graph structure from the raw RDF can help obtain semantic type relations and reduce the computational complexity for graph processing purposes. In this paper, we addressed the problem of graph summarization in RDF graphs, and we proposed an approach for building summary graph structures automatically from RDF graph data. Moreover, we introduced a measure to help discover optimum class dissimilarity thresholds and an effective method to discover the type classes automatically. In future work, we plan to investigate further improvement options on the scalability of the proposed method
    corecore