65,706 research outputs found

    Autonomous prealignment of a docking mechanism

    Get PDF
    Proposed future space exploration, such as lunar and Martian expeditions, will require autonomous docking of space vehicles. One proposed candidate method of autonomous docking utilizes a actively controlled parallel manipulator. Operation of the proposed docking manipulator can be segmented into four successive events: prealignment, capture/latching, attenuation, and structural rigidization. This paper discusses the development and testing of a digitally controlled, six-degree-of-freedom (6-DOF), parallel manipulator for the prealignment segment of a docking spacecraft

    Autonomous RPRV Navigation, Guidance and Control

    Get PDF
    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described

    Evaluation and testing system for automotive LiDAR sensors

    Get PDF
    The world is facing a great technological transformation towards fully autonomous vehicles, where optimists predict that by 2030 autonomous vehicles will be sufficiently reliable, affordable, and common to displace most human driving. To cope with these trends, reliable perception systems must enable vehicles to hear and see all their surroundings, with light detection and ranging (LiDAR) sensors being a key instrument for recreating a 3D visualization of the world in real time. However, perception systems must rely on accurate measurements of the environment. Thus, these intelligent sensors must be calibrated and benchmarked before being placed on the market or assembled in a car. This article presents an Evaluation and Testing Platform for Automotive LiDAR sensors, with the main goal of testing both commercially available sensors and new sensor prototypes currently under development in Bosch Car Multimedia Portugal. The testing system can benchmark any LiDAR sensor under different conditions, recreating the expected driving environment in which such devices normally operate. To characterize and validate the sensor under test, the platform evaluates several parameters, such as the field of view (FoV), angular resolution, sensor’s range, etc., based only on the point cloud output. This project is the result of a partnership between the University of Minho and Bosch Car Multimedia Portugal.This work was supported by the European Structural and Investment Funds in the FEDER component through the Operational Competitiveness and Internationalization Programme (COM-PETE 2020), Project nº 037902, Funding Reference POCI-01-0247-FEDER-037902

    New research opportunities for roadside safety barriers improvement

    Get PDF
    Among the major topics regarding the protection of roads, restraint systems still represent a big opportunity in order to increase safety performances. When accidents happen, in fact, the infrastructure can substantially contribute to the reduction of consequences if its marginal spaces are well designed and/or effective restraint systems are installed there. Nevertheless, basic concepts and technology of road safety barriers have not significantly changed for the last two decades. The paper proposes a new approach to the study aimed to define possible enhancements of restraint safety systems performances, by using new materials and defining innovative design principles. In particular, roadside systems can be developed with regard to vehicle-barrier interaction, vehicle-oriented design (included low-mass and extremely low-mass vehicles), traffic suitability, user protection, working width reduction. In addition, thanks to sensors embedded into the barriers, it is also expected to deal with new challenges related to the guidance of automatic vehicles and I2V communication
    corecore