
Citation: Gomes, T.; Roriz, R.; Cunha,

L.; Ganal, A.; Soares, N.; Araújo, T.;

Monteiro, J. Evaluation and Testing

System for Automotive LiDAR

Sensors. Appl. Sci. 2022, 12, 13003.

https://doi.org/10.3390/

app122413003

Academic Editors: Pavel Kučera and

Martin Jonák

Received: 24 October 2022

Accepted: 14 December 2022

Published: 18 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Evaluation and Testing System for Automotive LiDAR Sensors
Tiago Gomes 1,* , Ricardo Roriz 1 , Luís Cunha 1 , Andreas Ganal 2, Narciso Soares 2, Teresa Araújo 2

and João Monteiro 1

1 Centro ALGORITMI/LASI, Escola de Engenharia, Universidade do Minho, 4800-058 Guimarães, Portugal
2 Bosch Car Multimedia Portugal S.A., 4705-820 Braga, Portugal
* Correspondence: mr.gomes@dei.uminho.pt

Abstract: The world is facing a great technological transformation towards fully autonomous vehicles,
where optimists predict that by 2030 autonomous vehicles will be sufficiently reliable, affordable, and
common to displace most human driving. To cope with these trends, reliable perception systems
must enable vehicles to hear and see all their surroundings, with light detection and ranging (LiDAR)
sensors being a key instrument for recreating a 3D visualization of the world in real time. However,
perception systems must rely on accurate measurements of the environment. Thus, these intelligent
sensors must be calibrated and benchmarked before being placed on the market or assembled in a car.
This article presents an Evaluation and Testing Platform for Automotive LiDAR sensors, with the
main goal of testing both commercially available sensors and new sensor prototypes currently under
development in Bosch Car Multimedia Portugal. The testing system can benchmark any LiDAR
sensor under different conditions, recreating the expected driving environment in which such devices
normally operate. To characterize and validate the sensor under test, the platform evaluates several
parameters, such as the field of view (FoV), angular resolution, sensor’s range, etc., based only on the
point cloud output. This project is the result of a partnership between the University of Minho and
Bosch Car Multimedia Portugal.

Keywords: autonomous driving; LiDAR sensors; perception systems; Evaluation and Testing

1. Introduction

The world is undergoing an unprecedented technological transformation in which
vehicles and autonomous driving systems are evolving at a breathtaking pace [1–4]. Op-
timistic predictions claim that by 2030 autonomous vehicles will be sufficiently reliable,
affordable, and common to displace most human driving, providing huge savings and
benefits [5]. However, most of the vehicles today are manually controlled, and in order
to achieve full driving autonomy they must evolve through different levels of driving
automation, as defined by the American Society of Automotive Engineers (SAE) [6]; levels
0—No Driving Automation, 1—Driver Assistance, and 2—Partial Driving Automation
require a human driver to monitor the driving environment, while in levels 3—Conditional
Automation, 4—High Automation, and 5—Full Automation the automated system is able
to autonomously monitor and navigate the driving environment.

Current Level 2 vehicles are provided with advanced driver-assistance systems (ADAS)
to help the driver in several situations, such as assisting in parking tasks, providing traffic
alerts, promoting collision avoidance with other vehicles and objects, and performing auto-
mated decisions in situations that may compromise the safety of all occupants. Nonetheless,
in order to cope with these revolutionary trends new solutions at the sensor level must be
created to provide vehicles with the ability to hear and see the surrounding environment.
An autonomous vehicle requires reliable sensors in order to recreate an accurate mapping of
the surroundings, which is only possible with multi-sensor perception systems relying on a
combination of radars, cameras, and light detection and ranging (LiDAR) sensors [7–10],
as illustrated in Figure 1. Radar sensors can provide (1) cross-traffic alerts and Blind Spot

Appl. Sci. 2022, 12, 13003. https://doi.org/10.3390/app122413003 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122413003
https://doi.org/10.3390/app122413003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4071-9015
https://orcid.org/0000-0002-8543-550X
https://orcid.org/0000-0002-7940-5347
https://orcid.org/0000-0002-3287-3995
https://doi.org/10.3390/app122413003
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122413003?type=check_update&version=2

Appl. Sci. 2022, 12, 13003 2 of 19

Assist features, as well as assisting with (2) Adaptive Cruise Control systems; on the other
hand, LiDAR sensors can be used to (3) translate the surroundings into a 3D representation,
achieving several distances with high levels of accuracy and precision; finally, cameras can
help with such features as (4) object detection and classification and (5) collision avoidance.

4

4

4
4

5

3

1

1

1

1

2

LiDAR

RADAR

Camera

Figure 1. Perception system of a car.

LiDAR sensors are emerging as a mandatory state-of-the-art technology that must be
part of any perception system, as they enable a true 3D visualization of the surroundings
through a point cloud representation in real time [11–14]. Accurate and precise measurement
of the surroundings with LiDAR sensors can assist the perception systems in several tasks [9],
e.g., obstacles, objects, and vehicles detection [15–17]; pedestrians recognition and track-
ing [18,19]; and ground segmentation for road filtering [20], among others [21]. Continual
advances around LiDAR are improving its measuring and imaging architectures [12,22,23].
Nonetheless, the measurements and the 3D point cloud of a LiDAR sensor can always be cor-
rupted by several noise sources, e.g., internal components [24], mutual interference [25,26],
reflectivity issues [27], light [11], adverse weather conditions [10,28–30], and others [31],
making it compulsory to test and analyze all sensors’ characteristics before they are placed
on the market or assembled in a car. The first steps towards creating controlled environ-
ments for testing and evaluation of LiDAR sensors have already been taken. For instance,
LIBRE [32], the first benchmarking and reference LiDAR dataset, tested ten sensors in three
different environments and configurations: (1) static targets, where objects were placed
at known distances and measured from a fixed position within a controlled environment;
(2) adverse weather, where static obstacles were measured from a moving vehicle (captured
in a weather chamber where LiDARs were exposed to different adverse conditions, such as
fog, rain, and strong light); and (3) dynamic traffic, where dynamic objects were captured
from a vehicle driven on public urban roads at multiple times and at different times of the
day. These tests, further improved upon in [33], contributed to the evaluation of important
parameters that play a crucial role on real-world LiDAR applications.

This article presents an evaluation and testing platform for automotive LiDAR sensors,
designed to test commercially available sensors and sensor prototypes that are under
development in Bosch Car Multimedia Portugal, S.A., before they are assembled for their
final destination. The main goal of the testing platform is to rapidly test and validate
sensors by analyzing only the point cloud output in order to validating the parameters
previously tested and calibrated during the manufacturing phase. The testing system
is able to benchmark any LiDAR sensor under real situations created in a controlled
environment to recreate the expected driving conditions to which such devices are normally
subjected. These conditions can be related to disturbances caused by different targets with
different materials, compositions, reflectiveness, geometry, environmental factors, and
noise conditions, among others. In order to characterize and validate the sensor under
test, the testing platform evaluates several parameters, such as the field of view (FoV),
angular resolution, sensor’ range, etc. The output of the evaluation and testing platform
can be used to validate the sensor parameters under test and to assist in calibration of the
perception system of the car. This article contributes to the state of the art with:

Appl. Sci. 2022, 12, 13003 3 of 19

1. An evaluation and testing platform for testing several parameters of a LiDAR sensor
for automotive applications;

2. A point cloud filter-based approach to evaluate several characteristics of a LiDAR
sensor at the reception level;

3. A desktop and an embedded approach for deploying the testing platform;
4. Validation of the platform through testing and evaluation of a commercial off-the-shelf

(COTS) LiDAR sensor.

2. LiDAR Sensors for Automotive

As a high-level overview, a LiDAR system is composed of two main components: an
emitter (laser) and a receiver (light detector), as depicted in Figure 2. The laser emits short
pulses of light with a well-defined time interval (a few to several hundred nanoseconds) and
with specific spectral properties into the optical steering system. By regulating the mirror’s
angle, the system controls the direction of the light vertically and horizontally, providing
multiple angle detection with just a single beam. Additionally, the optical properties
of the beam can be changed by the lens system in order to achieve better performance
ratios, e.g., by adding signal modulation schemes [23,34]. When the transmitted light
hits an object, the backscattered signal is collected by the receiver, which can filter and
select specific wavelengths or polarization schemes. In addition, the receiver system is
responsible for converting the optical signal into an electrical representation and storing
it along with its intensity values in a computing unit. Moreover, the receiver calculates
the time of travel of the transmitted light to obtain the distance to the obstacle. Within
an automotive application, the main characteristics of a LiDAR sensor that need to be
considered for inclusion in a LiDAR testing and evaluation platform are: (1) the horizontal
and vertical field of view (FoV); (2) the horizontal and vertical angular resolution (AR);
(3) the influence of external illumination; (4) power consumption; and (5) the sensor’s
minimum and maximum ranges.

Transmitted
Signal

LiDAR Sensor
Range Target

Backscattered
SignalDelay

Emitter

Receiver

Signal
 processing

Laser Optical
System

Signal
 processing

Photo
sensor

Optical
System

Figure 2. LiDAR working principle.

The aforementioned parameters are described in detail below:

• The Field of View is one of the metrics that defines the maximum angle at which a
LiDAR sensor is able to detect objects, as shown in Figure 3. When two scanning angles
are available, the sensor can scan a 3D area defined by the Vertical FoV (VFoV) and
the Horizontal FoV (HFoV). This test is designed to identify the maximum detection
angles of the sensor in order to validate its defined values.

• The Angular Resolution represents the sensor’s ability to scan and detect objects
within the FoV, as depicted in Figure 4. Higher resolutions allow for smaller blind
spots between laser firings, enabling the detection of small objects and greater detail
of the environment, particularly at higher detection ranges. Thus, this test is designed
to identify the angular resolution both vertically and horizontally in different areas of
the FoV in order to verifying that the collected values match the requirements and/or
the sensor’s characteristics as defined by the manufacturer.

Appl. Sci. 2022, 12, 13003 4 of 19

Figure 3. LiDAR horizontal and vertical FoV.

Figure 4. LiDAR horizontal and vertical AR.

• Background Light and Sunlight can have a severe impact on sensor behaviour. In
real-world environments, LiDAR sensors may experience substantially decreased per-
formance when exposed to external light interference, such as sunlight backscattering
from targets with high reflectivity characteristics. Removing such light noise can be
particularly challenging, as solar radiation is a powerful light source present in a wide
range of wavelengths [35]. Therefore, it is important to evaluate sensor output when
exposed to background light in a controlled environment.

• The Power Consumption test aims to monitor and analyze the power consumption
of the sensor under test in different operation modes, configured parameters, and
environment/target conditions.

• The Range can be defined as the minimum and the maximum distances at which
the sensor successfully detects an object. While detecting the minimum range can
be quite simple, finding the maximum range is not straightforward, and depends
on the target’s reflectivity, which is considered detected when it appears in at least
90% (detection probability) of the the sensor’s data output. With a target reflectivity
higher than 40–50%, detecting the maximum range in a straight line inside our testing
laboratory (maximum range 100 m) would be impossible for high-range sensors.
However, a sensor’s maximum range can be deduced from measurements performed
on lower reflectivity targets by using the relationship between the returning signal
strength from a specific target with a known reflectivity and its distance to the sensor.
This method is based on the signal power arriving at the LiDAR detector as defined
by the Equation (1), where A is a constant, Rlab is the target’s reflectivity, and r2

lab is
the target’s distance.

Psig =
ARlab

r2
lab

(1)

If the required minimum level for the returning signal remains the same regardless of
the target’s reflectivity, the maximum distance can be calculated for any reflectivity
value using Equation (2), where Rsim is the target reflectivity to be simulated and rsim
is the corresponding target distance calculated for the new reflectivity level. In order
to reduce errors in the estimations, several measurements for the maximum range
must be performed, e.g., targets with reflectivity of 10%, 20%, and 40%.

Appl. Sci. 2022, 12, 13003 5 of 19

rsim =

√
Rsimr2

lab
Rlab

(2)

3. LiDAR Evaluation and Testing

The Evaluation and Testing Platform for Automotive LiDAR Sensors aims at the design
and development of a test bench for LiDAR sensors (commercially available and Bosch
prototypes currently under development) that is able to characterize and test the main
parameters previously described in Section 2. Such tests are being performed at two Bosch
locations: (1) the Optical Lab (range up to 23 m) and (2) the Long Range Measurements lab
(range up to 100 m).

3.1. System Architecture

The Optical Lab is composed of a set of equipment used to perform the desired tests.
For the FoV, AR, and short-range measurements, we use a customized rail system and
goniometric rotation system (RotGon) composed of a URS150BPP Rotation Stage and an
M-BGM200BPP Goniometer from Newport. Regarding the power consumption, we use
a direct current (DC) power analyzer (the N6705C four-channel station), while for the
external illumination influence we use an independent setup, which is further explained
below. Except for the backlight interference test, the testing and evaluation platform, the
architecture of which is depicted by Figure 5, connects all the equipment within a Robot
Operating System (ROS) environment. All the processing tasks are distributed between a
workstation and an embedded platform with acceleration capabilities through available
field-programmable gate array (FPGA) technology. Either can ensure the complete system’s
functionality, allowing the laboratory to perform tests with either one of the systems alone
or with both at the same time, with latter approach enabling redundancy capabilities in the
testing system.

Rail System

LiDAR Sensor

RotGon

LiDAR Sensor

Power Supply

Processing System

Desktop

Embedded System

Programmable Logic (PL) - FPGA

Xilinx 16nm FinFET+ chip

Memory

DDR4 2GB - 64bit

SD-Card Slot -
16Gb

Processing System (PS)
Quad-core ARM® Cortex™-A53

Graphic Card Memory

DDR4 32GB -
64bit

512 GB - SSD
1 TB - HDD

Processing System (PS)
Intel Xeon E3-1270v6

NVidia Quadro P2000

Figure 5. System architecture.

The workstation is a great solution for developing testing algorithms and other
computing-intensive software tasks without being concerned about hardware resources.
It is composed of a powerful desktop processor, a high-performance graphics card, and
32 gigabytes of random-access memory (RAM). Due to their heavy processing requirements,
certain workstation tasks can be performed by either the available processing units or by
the combination of processors and the graphics card. Despite this solution, and having in

Appl. Sci. 2022, 12, 13003 6 of 19

mind minimal setup and hardware resources, the testing sequences and algorithms are
supported by an embedded system built upon the Zynq UltraScale+ XCZU7EV-2FFVC1156
MPSoC (available in the ZCU104 Evaluation Kit). This MPSoC features a processing sys-
tem (PS) that includes a quad-core Arm Cortex-A53 application processor, a dual-core
Cortex-R5 real-time processor, a Mali-400 MP2 graphics processing unit, a 4KP60 capable
H.264/H.265 video codec, programmable logic (PL) with FPGA technology, and 2 GB of
DDR4 memory. The embedded system allows for exploration of the available FPGA for
accelerating heavy processing tasks, which can help in mitigating the overall processor’s
workload and avoid utilization of the workstation. This can be useful in tests that require
moving equipment as well. For the purpose of this article, all evaluations were performed
only with the workstation; however, this does not affect the overall behavior of the system.

3.2. Lab Equipment

RotGon: The RotGon enables tilting/rotating of LiDAR sensors in three distinct angles.
The rotation stage permits continuous 360º motion with a maximum speed of 2º/s and a
minimum incremental motion of 0.01º. The goniometer allows an angular range between
−15º and 45º and features a worm mounted rotary encoder for improved accuracy and
repeatability. Due to its high precision, the RotGon is highly important for the measurement
of the AR and the FoV.

Rail System: The rail system was designed to enable a base moving that can handle weights
of up to 30 kg and can be programmed by external communication. In turn, the base can
support several targets with different reflectivity values. The rail system’s structure has
a length of 25 m and it is installed inside the laboratory. Figure 6 depicts the rail system
with the LiDAR sensor installed on top of the RotGon (left side) and the moving platform
with a mounted target at the end of the rail structure (right side). The rail system allows
the velocity and acceleration/deceleration of the moving target to be controlled with given
values (in mm/s for velocity and ± mm/s2 for acceleration/deceleration). Prior to its
utilization, the rail system was calibrated with rangefinder equipment used to measure
several distances to a target with 95% reflectivity mounted on the rail system. These
measurements were used as reference values for the internal position detector sensor.

Figure 6. Evaluation and testing platform with the goniometric rotation system, LiDAR sensor, and
the rail system.

Power Supply: This equipment is used to power and monitor the power consumption of
the LiDAR sensor under test. The power supply used in the evaluation and testing platform
is the N6705C DC Power Analyzer, which includes four independent channels that can be
used to power and monitor four different connected modules. The voltage and current
levels for each channel can be changed in real time, allowing further testing of the sensor’s
behaviour under different power source conditions.

Appl. Sci. 2022, 12, 13003 7 of 19

External illumination influence (background and sunlight): Ambient light from the sun
and artificial sources represents one of the major drawbacks of using LiDAR in outdoor
applications. For this reason, we created the setup depicted in Figure 7, which allows the
influence of the external illumination to be tested by artificially changing the behaviour of
the target’s background light.

Figure 7. Experimental setup for background light influence.

Creating a setup with uniform illumination hitting the entire target is not feasible for
objects with a larger area, as this would require an extremely strong light source and it would
be hard to manipulate which specific area of target should be hit by the light. Therefore, this
setup includes a beam splitter between the LiDAR and the target, which can couple the light
source in the receiving path coming from the target. This setup makes it particularly easy to
simulate different target reflectivities by varying the sending/receiving light signal, and it
is possible to specify which region overlays the background light on the receiving path. The
distance from the beam splitter to the target is around 5 m, and that from the beam splitter to
the LiDAR is 15 cm. The light source used is a MAGIS 650 W lamp from Desisti.

Figure 8 shows the impact of the background light on LiDAR performance. The
validation of this setup was carried out with the Velodyne VLS-128; it can easily be seen
that it is possible to blind the LiDAR sensor in such a way that the target is no longer
detected on the point cloud. This setup allows for testing of different LiDAR systems in
different illumination conditions to evaluate the impact on the collected point cloud.

(a) No background light. (b) Point cloud with no background light.

(c) With background light. (d) Point cloud with background light.

Figure 8. Influence of background light.

Appl. Sci. 2022, 12, 13003 8 of 19

3.3. ROS Software Architecture

The system’s software stack is based on an ROS environment on top of a Linux
operating system (OS), with both supported by the embedded system and the workstation.
Despite each distribution being different for each platform (due to hardware resource
asymmetry, processor architectures, etc.), the combination of Linux and ROS creates the
required abstraction layer to develop software packages regardless of their target platform.
Alongside the required ROS core components, our software architecture is composed of
eight software packages, as depicted by Figure 9.

H
W

 ROS Enviroment

Se
rv

ic
es

N
od

es
O

S Linux Operating System

To
pi

cs

Launch
files

Sanity Check

- check_live_nodes;
- powersupply_test;
- railsystem_test;
- rotgon_test;
- complete_test

Target Detection

- change_euclidean_filter
_parameters;
- change_clustering
_parameters;
- change_fov_filter
_parameters;
- change_fov_filter_state;

- distance_filtered_point
_cloud;
- clustered_point_cloud;
- target_detected;
- fov_filtered_point_cloud;

Powersupply

- power_cycle;
- power_off;
- power_on

- voltage;
- current

 Desktop System Embedded System

Tests

- start_fov_test;
- change_rotgon
_offsets

RotGon

- move_r_to;
- move_r0_to;
- move_g_to;
- power;
- go_home

- status;
- position

Sensor
driver

Sensor
dependent

Sensor
dependent

Railsystem

- move_to;
- stop;
- restart;
- reset_errors;
- jog_plus;
- jog_minus

- state;
- isReady;
- errors;
- position

Figure 9. Software stack overview.

Launch files package: This package was developed to ease the system’s launch with the
correct testing setup. It allows for flexible debug sessions with different LiDAR sensors, dif-
ferent sensor configurations, and several system setups in which one or more components
(e.g., RotGon, the rail system) may not be used. This package only presents launch files
without services or topics available.

RotGon: The RotGon package enables tilting/rotating of LiDAR sensors in three distinct
angles. Therefore, this package provides three services, one for each axis, to move the sensor
to the desired position/angle: move_r_to, move_r0_to, and move_g_to. Additionally, it
provides a self-reset service that moves all axes to the 0◦ degree position: go_home, as
well as a power service to turn the device on and off. The RotGon package publishes
information on two topics: one to display the current RotGon status regarding errors
(status) and another to output the current angle position in real time (position).

Railsystem: This package is responsible for moving the target within the sensor’s FoV.
Therefore, it provides three moving services: one to send the target to a desired position,
move_to; one to move the target away from the sensor at a constant speed and accelera-
tion, jog_plus; and another to move the target towards the sensor, jog_minus. All can be
interrupted by calling the stop service. Two more services are available: one to control
the system regarding errors (reset_errors) and another to handle communication issues
(restart). As with RotGon, this package has two other topics, one with status information
(state) and another that publishes the current platform’s position (position).

Powersupply: This package is responsible for controlling the sensor’s power source. It
provides three services to individually control each channel: one for turning on the power
source, power_on; one for turning off the power source, power_off ; and another for reset-
ting the power supply, power_cycle. In addition, it can set different voltage and current
values, providing real-time measurements of the channel powering the sensor.

Appl. Sci. 2022, 12, 13003 9 of 19

Sanity Check: This package consists of a set of tools used to verify the full operation of
the main system used for testing a sensor, i.e., the rail system, RotGon, and power supply.
It provides one service to individually test each core component, <equipment>_test; one
that tests the connectivity with the nodes, check_live_nodes; and another that sequentially
tests the whole setup.

Sensor driver: This package depends on the sensor that is currently under test. Because
most manufacturers provide an ROS-based driver and packages to interface with their
sensors, the evaluation and testing platform can easily support a broad number of devices.
Nonetheless, each driver package has to be manually installed and configured before
changing the sensor and any test configuration.

Target detection: This package is required for tests that depend on the target’s visibility
inside the sensor’s FoV, and consequently its visibility in the point cloud. It supports a set
of services that are used to enable and configure several filters applied to the point cloud,
such as the target’s distance, the software-based FoV, etc. Such filters are further explained
in the next section. This service can output several topics with the filtered point clouds
(one per filter) and one topic that continuously informs it of whether the target is inside the
sensor’s FoV (target_detected).

Tests: The Tests package contains the supported tests for the evaluation and testing platform
that require the utilization of at least one of the pieces of equipment mentioned above. For
each test, e.g., FoV and AR, a service is used to trigger the automated execution of the
whole procedure. During the test, all the test outputs are saved in an ROS log file.

4. System Implementation

For the sake of simplicity, this section only describes the software-based filters that
can be applied to a point cloud and the approaches used to calculate the FoV and the
AR. The remaining tests, e.g., sensor range and point cloud acquisition (with and without
background illumination), are beyond the scope of this article.

4.1. Point Cloud Filtering for Target Detection

The evaluation and testing platform aims to support any COTS LiDAR sensor as well
as Bosch prototypes under development. Regarding the supported tests, e.g., FoV, target
detection can be challenging because not all sensors provide the point’s intensity values
along with their coordinate data. Therefore, and in order to support all sensors’ outputs,
we have created a set of filters that can be used to detect targets without relying on the
point intensity values, including distance and clustering filters.

Distance Filter (DF): Because the target is placed at a known distance from the sensor,
the output of this filter is a new point cloud (published to the filtered_point_cloud topic)
containing points that are, at this distance, ± a threshold value (used to avoid removal
of points that actually belong to the target). The result after applying the distance filter is
shown in Figure 10a. This procedure removes undesired points, and can help to reduce the
computational costs of subsequent tasks.

Clustering Filter (CF): The cluster filter algorithm groups the points that are present in
the point cloud and evaluates whether the target is within the clusters created. Because
the target’s distance and size and the sensor’s resolution can have an effect on the
clustering results, this algorithm must be tuned afterwards. Figure 10b depicts the
output of the CF algorithm without tuning its parameters; it can be seen that two clusters
were identified, represented by the yellow and red points. The points present inside
the yellow cluster result from points that are at the same distance as the target, which
must be removed during the next step. To detect whether the resulting clusters represent
the target, a Euclidean clustering filter is applied. Because the point density within the
target’s cluster is higher than in other objects at the same distance, this filter analyzes
the neighbour points of each point within a defined search radius R1. If a neighbor

Appl. Sci. 2022, 12, 13003 10 of 19

point is inside this search radius R1, it belongs to the same cluster and is retained in
the point cloud; otherwise, it is removed. This task is performed by resorting to the
EuclideanClusterExtraction.extract method presented in the point cloud library (PCL) [36].
The parameters used to configure this method are:

• Cluster Tolerance: Defines the search radius R1; if the chosen value is too small, the
same target can be divided into multiple clusters. On the other hand, multiple objects
can be set as just one cluster if this value is too high. This parameter permits an
interval value between 0.01 and 1 m.

• Minimum Cluster Size: This parameter is used to define the minimum number of
points required to form a cluster. It permits values between 1 and 10,000 points.

• Maximum Cluster Size: This parameter defines the maximum number of points used
to form a cluster. It supports a minimum of 2 and a maximum of 50,000 points.

(a) Distance filter applied. (b) Distance filter and Euclidean
clustering applied.

(c) Distance filter and Euclidean
clustering applied and tuned.

Figure 10. Target detection steps.

Figure 10c depicts the point cloud output after applying the tuned Euclidean clus-
tering filter. When the target’s cluster is found, this filter publishes a message to the
target_detected topic using the TargetInfo message type, which contains a boolean variable
(True if the target is being detected and False otherwise) and the number of points inside
the cluster. The new point cloud, which now contains only the target’s cluster, is published
in the clustered_point_cloud topic, which can finally be used in testing the sensor parameters,
e.g., FoV and AR.

FoV software filter (FoVSF): The purpose of this filter is to enable support for any LiDAR
sensor on the market, including the rotation-based COTS LiDAR sensors widely used in
automotive applications, which usually provide a 360º horizontal FoV. Notwithstanding
this, for the purposes of testing and validating the platform, which must support addition-
ally LiDAR sensors with a limited FoV, the FoV software filter allows the point cloud to
be cropped to a desired horizontal and vertical FoV. This filter runs in two steps: first, it
converts the points in the point cloud from the Cartesian to the spherical coordinate system,
using Equation (3) to calculate the azimuth and Equation (4) for the elevation angle; in the
second step, the algorithm discards the points from the point cloud that are not within
the desired thresholds. The output of this filter is an ROS topic with a new point cloud
containing the points that are within the configured FoV. Later, in Section 5, we present an
application of this filter.

θ =

arctan y
x×180

π , if x ≥ 0 and y ≥ 0
arctan y

x×180
π + 180, if x < 0 and y ≥ 0

270− arctan y
x×180

π , if x < 0 and y < 0
arctan y

x×180
π + 360, otherwise

(3)

Appl. Sci. 2022, 12, 13003 11 of 19

ϕ =

90− arctan

√
x2+y2

z ×180
π , if z > 0

−(arctan

√
x2+y2

z ×180
π + 90), if z < 0

0, otherwise

(4)

4.2. Implementation of the FoV Test

The test to determine the sensor’s FoV consists of using a target with a well-known
size and reflectivity placed at a known distance on top of the rail system’s target holder.
Because the rail system can only provide variable ranges, it is possible to take advantage
of the RotGon to move the sensor in both the horizontal and vertical directions while
checking when the target moves outside of the sensor’s FoV. Using the position data from
the RotGon, it is possible to find the sensor’s FoV. The procedure is illustrated in Figure 11.

Start FoV Test

Target center defined as (Tx,Ty)

Find Target

Get Max and Min
detection angle in

Ty axis (VFoV)

Get Max and Min
detection angle in

Tx axis (HFoV)

Get Max detection
angles in all
quadrants

(VFoV&HFoV)

Finish FoV Test

Rotgon

Rx

Rx

Ry

Rx

Ry

Rx

Ry

Rx

Ty

Tx

Target

Ty

Tx

Ty

Tx

Ty

Tx

Figure 11. Field of view flowchart overview.

The test starts with a routine that uses the services provided by the Target Detection
package described above to find a target inside the sensor’s point cloud data. If the target
is detected, the algorithm starts measuring the FoV. First, it starts by finding the maximum
and minimum angles in the vertical axis to achieve the vertical FoV (the blue square in the
image). Next, the same concept is applied to the horizontal axis to find the horizontal FoV
(the red square in the image). Finally, the values retrieved in the previous tasks are used as

Appl. Sci. 2022, 12, 13003 12 of 19

the starting conditions to test the consistency of both the horizontal and vertical FoVs in
the limits of all quadrants (the green square in the image).

FoV1 = P1− P3

FoV2 = P2− P4

FoV =
FoV1 + FoV2

2

FoVmin =
P1 + P2

2

FoVmax =
P3 + P4

2

(5)

In all procedures, in order to obtain the maximum and minimum detection angles, the
system increments/decrements the RotGon angles until the target reaches the four different
positions illustrated in Figure 12:

• P1—Last position where the target is completely outside of the FoV;
• P2—First position where the target is completely inside of the FoV;
• P3—Last position where the target is completely inside of the FoV;
• P4—First position where the target is completely outside of the FoV after P3;

Ty

Tx
P1 P2 P3 P4

P1
P2

P3
P4

Figure 12. Target positions for FoV measurement.

Then, based on Equation (5), the minimum detection angle (FoVmin), maximum de-
tection angle (FoVmax), and FoV are calculated for each axis. Because this method uses
the mean values of two known positions to achieve the minimum and maximum values,
the target size is automatically removed from the calculations. Moreover, and in order to
calculate an FoV as close as possible to the real value, at the limits of the FoV (where the
target starts to disappear) we use the lowest angular step provided by the RotGon, which
is 0.01º.

4.3. Implementation of the AR Test

A sensor’s AR defines the distance (in degrees) between two consecutive measured
points. A smaller distance and higher number of collected points per frame represent better
AR performance on the part of a sensor. With this in mind, the most straightforward way
to calculate the AR of a LiDAR output is by first counting the number of points present in
the point cloud (obtained from a high-reflectivity target with a known size Twidth × Theight,
as in Figure 13, and placed at a known distance Tdist). Next, the AR can be calculated using
Equation (6):

Appl. Sci. 2022, 12, 13003 13 of 19

ARh =
2 arcsin(Twidth

2Tdist
)

Hnumber_points

ARv =
2 arcsin(

Theight
2Tdist

)

Vnumber_points

(6)

Figure 13. Points reflected by a known target.

Based on the trigonometric functions that relate the right-angled triangle created by

half the size of the target (Twidth
2 or

Theight
2) to the distance between the sensor and the target

(Tdist), it is possible to calculate the angle needed to detect half of the target. Then, the AR
can be achieved by dividing this angle by the half the number of points within the target.
As in the FoV test, the AR test re-measures the vertical and horizontal AR at different target
positions. However, such positions are not the same as in the FoV test. There, the goal was
to find the RotGon angles at which the target was entirely inside or outside the point cloud.
For the AR test, the goal is to obtain multiple positions, as illustrated by Figure 14, where
the angular resolution can be different.

Figure 14. Target positions for full AR evaluation.

Moreover, and because a sensor usually presents higher point density in the center
of the point cloud, the AR can vary by several tenths of degrees depending on the target
position. Therefore, this measurement is performed within different regions (defined
by a software FoV filter) inside the point cloud, which are reduced by 25% with each
iteration (Figure 14). After computing both the vertical and horizontal AR for each target
position, the test summarizes the information by calculating the arithmetical mean of
each virtual FoV based on Equation (7). For each iteration, we define nine positions: the
central position that is common for all virtual FoVs, all four vertices, and the center of
each of the four edges.

Appl. Sci. 2022, 12, 13003 14 of 19

ARha%
=

1
9

(
9

∑
i=1

ARhPia%

)

ARva% =
1
9

(
9

∑
i=1

ARvPia%

) (7)

5. Results

To validate the evaluation and testing platform and the algorithms developed for
testing LiDAR sensors, we selected the Velodyne VLS-128, which is one of the highest-
resolution sensors available on the market. This sensor is designed for specifically for
autonomous vehicles. The testing setup was that depicted earlier in Figure 6. This simple
test can show the full functionality of the system, as it uses most of the equipment available
inside the laboratory (the RotGon, rail system, and power supply) and the software point
cloud filtering modules previously discussed (DF, CF, and FoVSF). To provide reliable,
precise, and accurate measurements, all equipment was previously calibrated, and to ensure
the proper operation of the evaluation and testing platform, we ran a sanity check sequence
before testing the sensor. For the sake of simplicity, this section only shows the setup that
we created to test the FoV of a COTS LiDAR sensor.

5.1. Sanity Check

The sanity check sequence independently tests the power supply, the rail system, and
the RotGon. It is provided by the Sanity Check package, which provides four main services:
powersupply_test, railsystem_test, rotgon_test, and complete_test. Before running the
sanity check procedure, each service uses the check_live_nodes service to checks whether
the ROS node corresponding to the equipment being tested is turned on and visible within
the ROS network. Regarding the outcome of the sanity checks, the test either results
in success, meaning that the system is ready to test the LiDAR sensor, or in failure, in
which case it reports which component resulted in an error. The errors reported by each
equipment’s node are summarized in Table 1.

Power supply sanity check: After checking whether the powersupply_node is alive, this test
verifies whether any sensor is connected to the system by obtaining the list of connected
sensors. Then, it evaluates whether each connected sensor’s parameters match the values
reported by the power supply. There are three possible outcomes: (1) the node is unrespon-
sive; (2) the connected sensor matches the configured parameters; or (3) the power supply
readings do not match the expected values.

Rail system sanity check: Similar to the power supply, the rail system routine begins by
testing whether its corresponding ROS node is alive. Next, the rail system is validated
by sending the platform that holds the target into different positions while checking the
system’s response. In this way, two dedicated services are defined, move_sequence and
is_moving; the first is responsible for calling the move_to services, while the latter checks
whether the target is in fact moving or is at the desired position. The rail system sanity
check has six possible outputs: (1) no problems were detected; (2) the node is unresponsive;
(3) the node’s internal flags indicate a busy state, i.e., the rail system is not ready to receive
commands; (4) the internal flags indicate internal error status; (5) the target did not move
after a move_to command; (6) the target could not stop after a stop command; and (7) the
target is not at the expected position.

Appl. Sci. 2022, 12, 13003 15 of 19

Table 1. Sanity check error list.

Equipment Result Description

Powersupply

1 No problems detected

2 No node detected in the ROS Environment

3 Values detected not matching the expected values

Railsystem

1 No problems detected

2 No node detected in the ROS Environment

3 Component not ready

4 Component has internal errors

5 Component not moving after a moving command

6 Component not stopping after a stop command

7 Component not in the correct position

Rotgon

1 No problems detected

2 No node detected in the ROS Environment

3 Component not in the correct position

RotGon sanity check: This routine verifies four moving commands: go_home,
move_r_to, move_r0_to, and move_g_to. Next, it tests whether the moving parts (one
for each axis) are at the desired angles. This test can report three possible situations: (1) the
RotGon is alive and running; (2) The RotGon node is unresponsive; and (3) the RotGon
positions are different from the expected positions.

5.2. FoV Test

To validate the FoV testing algorithm, we used different FoV values within the
range of the Velodyne VLS-128: a horizontal FoV of 360º and a vertical FoV of 40º.
This can be adjusted by using FoVSF, provided by the Target Detection package. It is
important to mention that we forced this step in order to prove the functionality of
the FoVSF (mostly for the horizontal plane, as the VLS-128 provides a 360º horizontal
FoV), which may not be required when testing sensors with limited FoV values and is
required to validate the parameters provided and set by the manufacturer. After placing
the target at a known distance and within the visibility of the configured FoV, the DF is
applied to remove the points in the point cloud that are outside of the desired range,
resulting in a cleaner point cloud and helping to reduce the computational requirements
of the subsequent tasks. Finally, the CF step is applied. At this point, the system has
successfully locked the target and is finally able to evaluate the FoV value that is known
and was previously set.

The results are published in real time to the target_detected topic, which is subscribed
to by the running test script, in this case corresponding to the FoV test script. Figure 15
depicts all the steps performed to detect and lock the target in the point cloud: (1) Figure 15a
shows the raw data sent by the VLS-128; (2) Figure 15b depicts the application of the FoVSF;
(3) Figure 15c illustrates the DF output; and (4) Figure 15d shows only the point cluster that
corresponds to the target visible and locked in the point cloud.

Appl. Sci. 2022, 12, 13003 16 of 19

(a) VLS-128 point cloud (raw data) (b) FoVSF applied

(c) DF applied (d) DF and CF applied
Figure 15. Target detection steps.

Next, we run the Tests package, which is responsible for the algorithms previously
described in Figures 11 and 12. The gathered results obtained using the parameters
described in Table 2 are summarized in Table 3. We performed three distinct tests, Test 1,
Test 2, and Test 3, consisting of changing the sensor’s FoV and validating the configured
values. For the vertical FoV, we measured different regions inside the original sensor’s
values (40º), as this area is within the range of the RotGon’s rotation angles. For the
horizontal FoV, we used three different values: 60º; 55º; and 135º.

Table 2. Filter parameters.

Cluster Filter Distance Filter Target

Cluster
Tolerance

Cluster Size
(min)

Cluster Size
(max)

Threshold
(min)

Threshold
(max) Distance

0.03 m 100 pt 2000 pt 5.5 m 5.6 m 5.5 m

Table 3. Test results for the FoV evaluation.

Horizontal
FoV (min)

Horizontal
FoV (max)

Vertical
FoV (min)

Vertical
FoV (max)

Test 1 FoVSF 0º 60º −10º 15º
Measured FoV 0.03º 59.89º −1.95º 14.89º

Test 2 FoVSF 20º 75º −15º 0º
Measured FoV 20.02º 74.89º −14.79º −1.05º

Test 3 FoVSF 0º 135º 0º 17º
Measured FoV −1.08º 134.70º 0.04º 16.92º

Appl. Sci. 2022, 12, 13003 17 of 19

Comparing the measured FoV values with the FoVSF parameters, makes it possible
to observe the deviations of angles from the expected values and the readings from the
RotGon. In the performed tests, these values ranged from 0.02º (Test 2, min. Horizontal
FoV) to 0.30º (Test 3, max. Horizontal FoV). This could be for three main reasons: (1) the
smallest angle the RotGon can read is 0.01º; (2) the sensor is being evaluated from the
receiver’s perspective, which is only based on analyzing the received point cloud; and
(3) because a CF is being applied to the target’s region in the point cloud, the number of
points that belong to the cluster usually varies, which is mainly related to the sensor’s
precision, accuracy, and resolution.

In all the results, the proper operation of the evaluation and testing platform is
apparent, with certain calculated angles having slight deviations from the desired values.
It is important to mention that our measurements are performed from the sensor receiver’s
perspective, and are only based on the point cloud data provided by the sensor for use
by other (high-level) applications within the perception system of the car. Therefore, we
consider these deviations to not be critical at this order of magnitude; they can be used to
validate the sensors’ parameters being tested. When more accurate analysis is required,
it is possible to submit the sensor to an end-of-line testing scenario, which is part of the
laboratory responsible for testing sensors under development within other Bosch projects.
However, end-of-line testing for the laser transmitter is beyond the scope of this article.

6. Conclusions

This article presents an evaluation and testing platform that is able to test and validate
different parameters of LiDAR sensors designed for automotive applications. The platform
was built upon a set of equipment supported by an ROS software environment. Because the
purpose of this platform is to evaluate any LiDAR sensor available on the market, we have
created several ROS packages to control and automate the tests and a set of software-based
filters able to support any sensor’s output based only on point cloud data information.
Despite all tests being performed from the sensor receiver’s perspective, the results are
quite promising. We validated the output of a Velodyne VLS-128 sensor, as well as the
concept of our point cloud filtering approaches to the FoV, distance, and point clustering.
Nonetheless, the current algorithms must be improved upon in order to provide more
detailed information about the parameters being tested. Future developments should
include more testing scenarios and parameters, such as the laser emitting power, beam
divergence, spot size and shape, point cloud acquisition at different distances, maximum
range, and many more. It is our goal to support tests in real-life environments as well, such
as under adverse weather or in direct sunlight.

Author Contributions: Conceptualization, T.G., R.R. and N.S.; Methodology, T.G., R.R. and N.S.;
Software, R.R. and L.C.; Validation, T.G., R.R. and A.G.; Formal analysis, T.G.; Investigation, T.G.,
R.R., L.C. and N.S.; Resources, T.G., N.S., T.A. and J.M.; Data curation, T.G.; Writing—original draft,
T.G.; Writing—review & editing, T.G.; Visualization, T.G.; Supervision, T.G., A.G., N.S., T.A. and J.M.;
Project administration, T.G., A.G., N.S., T.A. and J.M.; Funding acquisition, T.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the European Structural and Investment Funds in the FEDER
component through the Operational Competitiveness and Internationalization Programme (COM-
PETE 2020), Project nº 037902, Funding Reference POCI-01-0247-FEDER-037902.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Daily, M.; Medasani, S.; Behringer, R.; Trivedi, M. Self-Driving Cars. Computer 2017, 50, 18–23. [CrossRef]
2. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T.M.; Mutz, F.; et al.

Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [CrossRef]
3. Gao, C.; Wang, G.; Shi, W.; Wang, Z.; Chen, Y. Autonomous Driving Security: State of the Art and Challenges. IEEE Internet

Things J. 2022, 9, 7572–7595. [CrossRef]

http://doi.org/10.1109/MC.2017.4451204
http://dx.doi.org/10.1016/j.eswa.2020.113816
http://dx.doi.org/10.1109/JIOT.2021.3130054

Appl. Sci. 2022, 12, 13003 18 of 19

4. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

5. Litman, T. Autonomous Vehicle Implementation Predictions; Victoria Transport Policy Institute Victoria: Victoria, BC, Canada, 2021.
6. Society of Automotive Engineers (SAE). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road

Motor Vehicles (Surface Vehicle Recommended Practice: Superseding J3016 Jun 2018); SAE International: Warrendale, PA, USA, 2021.
7. Guerrero-Ibáñez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor Technologies for Intelligent Transportation Systems. Sensors 2018,

18, 1212. [CrossRef] [PubMed]
8. Marti, E.; de Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell.

Transp. Syst. Mag. 2019, 11, 94–108. [CrossRef]
9. Shahian Jahromi, B.; Tulabandhula, T.; Cetin, S. Real-Time Hybrid Multi-Sensor Fusion Framework for Perception in Autonomous

Vehicles. Sensors 2019, 19, 4357. [CrossRef]
10. Mohammed, A.S.; Amamou, A.; Ayevide, F.K.; Kelouwani, S.; Agbossou, K.; Zioui, N. The Perception System of Intelligent

Ground Vehicles in All Weather Conditions: A Systematic Literature Review. Sensors 2020, 20, 6532. [CrossRef]
11. Warren, M.E. Automotive LIDAR Technology. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June

2019; pp. C254–C255.
12. Li, Y.; Ibanez-Guzman, J. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and

Perception Systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [CrossRef]
13. Roriz, R.; Cabral, J.; Gomes, T. Automotive LiDAR Technology: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6282–6297.

[CrossRef]
14. Cunha, L.; Roriz, R.; Pinto, S.; Gomes, T. Hardware-Accelerated Data Decoding and Reconstruction for Automotive LiDAR

Sensors. IEEE Trans. Veh. Technol. 2022, 1–10. [CrossRef]
15. Arnold, E.; Al-Jarrah, O.Y.; Dianati, M.; Fallah, S.; Oxtoby, D.; Mouzakitis, A. A Survey on 3D Object Detection Methods for

Autonomous Driving Applications. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3782–3795. [CrossRef]
16. Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud. Available on-

line: https://openaccess.thecvf.com/content_CVPR_2019/html/Shi_PointRCNN_3D_Object_Proposal_Generation_and_
Detection_From_Point_Cloud_CVPR_2019_paper.html (accessed on 1 September 2022).

17. Wu, J.; Xu, H.; Tian, Y.; Pi, R.; Yue, R. Vehicle Detection under Adverse Weather from Roadside LiDAR Data. Sensors 2020, 20,
3433. [CrossRef]

18. Wang, H.; Wang, B.; Liu, B.; Meng, X.; Yang, G. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle.
Robot. Auton. Syst. 2017, 88, 71–78. [CrossRef]

19. Peng, X.; Shan, J. Detection and Tracking of Pedestrians Using Doppler LiDAR. Remote Sens. 2021, 13, 2952. [CrossRef]
20. Huang, W.; Liang, H.; Lin, L.; Wang, Z.; Wang, S.; Yu, B.; Niu, R. A Fast Point Cloud Ground Segmentation Approach Based on

Coarse-To-Fine Markov Random Field. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7841–7854. [CrossRef]
21. Karlsson, R.; Wong, D.R.; Kawabata, K.; Thompson, S.; Sakai, N. Probabilistic Rainfall Estimation from Automotive Lidar. In

Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 4–9 June 2022.
22. Raj, T.; Hashim, F.; Huddin, B.; Ibrahim, M.; Hussain, A. A Survey on LiDAR Scanning Mechanisms. Electronics 2020, 9, 741.

[CrossRef]
23. Behroozpour, B.; Sandborn, P.A.M.; Wu, M.C.; Boser, B.E. Lidar System Architectures and Circuits. IEEE Commun. Mag. 2017,

55, 135–142. [CrossRef]
24. Jiménez, J. Laser diode reliability: Crystal defects and degradation modes. Comptes Rendus Phys. 2003, 4, 663–673. [CrossRef]
25. Kwong, W.C.; Lin, W.Y.; Yang, G.C.; Glesk, I. 2-D Optical-CDMA Modulation in Automotive Time-of-Flight LIDAR Systems. In

Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020;
pp. 1–4. [CrossRef]

26. Fersch, T.; Weigel, R.; Koelpin, A. A CDMA Modulation Technique for Automotive Time-of-Flight LiDAR Systems. IEEE Sensors
J. 2017, 17, 3507–3516. [CrossRef]

27. Lee, H.; Kim, S.; Park, S.; Jeong, Y.; Lee, H.; Yi, K. AVM / LiDAR sensor based lane marking detection method for automated
driving on complex urban roads. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA,
11–14 June 2017; pp. 1434–1439. [CrossRef]

28. Jokela, M.; Kutila, M.; Pyykönen, P. Testing and Validation of Automotive Point-Cloud Sensors in Adverse Weather Conditions.
Appl. Sci. 2019, 9, 2341. [CrossRef]

29. Vargas Rivero, J.R.; Gerbich, T.; Teiluf, V.; Buschardt, B.; Chen, J. Weather Classification Using an Automotive LIDAR Sensor
Based on Detections on Asphalt and Atmosphere. Sensors 2020, 20, 4306. [CrossRef] [PubMed]

30. Roriz, R.; Campos, A.; Pinto, S.; Gomes, T. DIOR: A Hardware-Assisted Weather Denoising Solution for LiDAR Point Clouds.
IEEE Sensors J. 2022, 22, 1621–1628. [CrossRef]

31. Chan, P.H.; Dhadyalla, G.; Donzella, V. A Framework to Analyze Noise Factors of Automotive Perception Sensors. IEEE Sens.
Lett. 2020, 4, 1–4. [CrossRef]

32. Carballo, A.; Lambert, J.; Monrroy, A.; Wong, D.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. LIBRE: The Multiple
3D LiDAR Dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October 2020–13
November 2020; pp. 1094–1101. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.3390/s18041212
http://www.ncbi.nlm.nih.gov/pubmed/29659524
http://dx.doi.org/10.1109/MITS.2019.2907630
http://dx.doi.org/10.3390/s19204357
http://dx.doi.org/10.3390/s20226532
http://dx.doi.org/10.1109/MSP.2020.2973615
http://dx.doi.org/10.1109/TITS.2021.3086804
http://dx.doi.org/10.1109/TVT.2022.3223231
http://dx.doi.org/10.1109/TITS.2019.2892405
https://openaccess.thecvf.com/content_CVPR_2019/html/Shi_PointRCNN_3D_Object_Proposal_Generation_and_Detection_From_Point_Cloud_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Shi_PointRCNN_3D_Object_Proposal_Generation_and_Detection_From_Point_Cloud_CVPR_2019_paper.html
http://dx.doi.org/10.3390/s20123433
http://dx.doi.org/10.1016/j.robot.2016.11.014
http://dx.doi.org/10.3390/rs13152952
http://dx.doi.org/10.1109/TITS.2021.3073151
http://dx.doi.org/10.3390/electronics9050741
http://dx.doi.org/10.1109/MCOM.2017.1700030
http://dx.doi.org/10.1016/S1631-0705(03)00097-5
http://dx.doi.org/10.1109/ICTON51198.2020.9203019
http://dx.doi.org/10.1109/JSEN.2017.2688126
http://dx.doi.org/10.1109/IVS.2017.7995911
http://dx.doi.org/10.3390/app9112341
http://dx.doi.org/10.3390/s20154306
http://www.ncbi.nlm.nih.gov/pubmed/32752297
http://dx.doi.org/10.1109/JSEN.2021.3133873
http://dx.doi.org/10.1109/LSENS.2020.2996428
http://dx.doi.org/10.1109/IV47402.2020.9304681

Appl. Sci. 2022, 12, 13003 19 of 19

33. Lambert, J.; Carballo, A.; Cano, A.M.; Narksri, P.; Wong, D.; Takeuchi, E.; Takeda, K. Performance Analysis of 10 Models of 3D
LiDARs for Automated Driving. IEEE Access 2020, 8, 131699–131722. [CrossRef]

34. Suss, A.; Rochus, V.; Rosmeulen, M.; Rottenberg, X. Benchmarking time-of-flight based depth measurement techniques. In
Smart Photonic and Optoelectronic Integrated Circuits XVIII; He, S., Lee, E.H., Eldada, L.A., Eds.; SPIE: Bellingham, WA, USA, 2016;
Volume 9751, pp. 199–217.

35. Sun, W.; Hu, Y.; MacDonnell, D.G.; Weimer, C.; Baize, R.R. Technique to separate lidar signal and sunlight. Opt. Express 2016,
24, 12949–12954. [CrossRef]

36. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China, 18 August 2011; pp. 1–4.

http://dx.doi.org/10.1109/ACCESS.2020.3009680
http://dx.doi.org/10.1364/OE.24.012949

	Introduction
	LiDAR Sensors for Automotive
	LiDAR Evaluation and Testing
	System Architecture
	Lab Equipment
	ROS Software Architecture

	System Implementation
	Point Cloud Filtering for Target Detection
	Implementation of the FoV Test
	Implementation of the AR Test

	Results
	Sanity Check
	FoV Test

	Conclusions
	References

