1,249 research outputs found

    Linearly many faults in 2-tree-generated networks

    Full text link
    In this article we consider a class of Cayley graphs that are generated by certain 3-cycles on the alternating group A n . These graphs are generalizations of the alternating group graph A G n . We look at the case when the 3-cycles form a “tree-like structure,” and analyze its fault resiliency. We present a number of structural theorems and prove that even with linearly many vertices deleted, the remaining graph has a large connected component containing almost all vertices. © 2009 Wiley Periodicals, Inc. NETWORKS, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64908/1/20319_ftp.pd

    On Data Dissemination for Large-Scale Complex Critical Infrastructures

    Get PDF
    Middleware plays a key role for the achievement of the mission of future largescalecomplexcriticalinfrastructures, envisioned as federations of several heterogeneous systems over Internet. However, available approaches for datadissemination result still inadequate, since they are unable to scale and to jointly assure given QoS properties. In addition, the best-effort delivery strategy of Internet and the occurrence of node failures further exacerbate the correct and timely delivery of data, if the middleware is not equipped with means for tolerating such failures. This paper presents a peer-to-peer approach for resilient and scalable datadissemination over large-scalecomplexcriticalinfrastructures. The approach is based on the adoption of epidemic dissemination algorithms between peer groups, combined with the semi-active replication of group leaders to tolerate failures and assure the resilient delivery of data, despite the increasing scale and heterogeneity of the federated system. The effectiveness of the approach is shown by means of extensive simulation experiments, based on Stochastic Activity Networks

    On the Definition of Cyber-Physical Resilience in Power Systems

    Full text link
    In recent years, advanced sensors, intelligent automation, communication networks, and information technologies have been integrated into the electric grid to enhance its performance and efficiency. Integrating these new technologies has resulted in more interconnections and interdependencies between the physical and cyber components of the grid. Natural disasters and man-made perturbations have begun to threaten grid integrity more often. Urban infrastructure networks are highly reliant on the electric grid and consequently, the vulnerability of infrastructure networks to electric grid outages is becoming a major global concern. In order to minimize the economic, social, and political impacts of power system outages, the grid must be resilient. The concept of a power system cyber-physical resilience centers around maintaining system states at a stable level in the presence of disturbances. Resilience is a multidimensional property of the electric grid, it requires managing disturbances originating from physical component failures, cyber component malfunctions, and human attacks. In the electric grid community, there is not a clear and universally accepted definition of cyber-physical resilience. This paper focuses on the definition of resilience for the electric grid and reviews key concepts related to system resilience. This paper aims to advance the field not only by adding cyber-physical resilience concepts to power systems vocabulary, but also by proposing a new way of thinking about grid operation with unexpected disturbances and hazards and leveraging distributed energy resources.Comment: 20 pages. This is a modified versio
    • …
    corecore