9 research outputs found

    Automatic Abstraction in SMT-Based Unbounded Software Model Checking

    Full text link
    Software model checkers based on under-approximations and SMT solvers are very successful at verifying safety (i.e. reachability) properties. They combine two key ideas -- (a) "concreteness": a counterexample in an under-approximation is a counterexample in the original program as well, and (b) "generalization": a proof of safety of an under-approximation, produced by an SMT solver, are generalizable to proofs of safety of the original program. In this paper, we present a combination of "automatic abstraction" with the under-approximation-driven framework. We explore two iterative approaches for obtaining and refining abstractions -- "proof based" and "counterexample based" -- and show how they can be combined into a unified algorithm. To the best of our knowledge, this is the first application of Proof-Based Abstraction, primarily used to verify hardware, to Software Verification. We have implemented a prototype of the framework using Z3, and evaluate it on many benchmarks from the Software Verification Competition. We show experimentally that our combination is quite effective on hard instances.Comment: Extended version of a paper in the proceedings of CAV 201

    Behavioural analysis of an I2C Linux driver

    Get PDF
    We present an analysis of the behaviour of an I2C Linuxdriver, by means of model checking with the mCRL2 toolset and static analysis with UNO.We have reverse engineered the source code to obtain the structure and interactions of the driver. Based on these results, we have semi-automatically created an mCRL2 model of the behaviour of the driver, on which we have checked mutual exclusion properties. This revealed non-trivial potential errors, like unprotected usage of shared memory variables due to inconsistent locking and disabling/enabling of interrupts. We also applied UNO on the instrumented source code and were able to find the same errors. These defects were confirmed by the developers

    The Configurable SAT Solver Challenge (CSSC)

    Get PDF
    It is well known that different solution strategies work well for different types of instances of hard combinatorial problems. As a consequence, most solvers for the propositional satisfiability problem (SAT) expose parameters that allow them to be customized to a particular family of instances. In the international SAT competition series, these parameters are ignored: solvers are run using a single default parameter setting (supplied by the authors) for all benchmark instances in a given track. While this competition format rewards solvers with robust default settings, it does not reflect the situation faced by a practitioner who only cares about performance on one particular application and can invest some time into tuning solver parameters for this application. The new Configurable SAT Solver Competition (CSSC) compares solvers in this latter setting, scoring each solver by the performance it achieved after a fully automated configuration step. This article describes the CSSC in more detail, and reports the results obtained in its two instantiations so far, CSSC 2013 and 2014

    Precise Pointer Reasoning for Dynamic Test Generation

    Get PDF
    Abstract. Dynamic test generation consists of executing a program while gathering symbolic constraints on inputs from predicates encountered in branch statements, and of using a constraint solver to infer new program inputs from previous constraints in order to steer next executions towards new program paths. Variants of this technique have recently been adopted in several bug detection tools, including our whitebox fuzzer SAGE, which has found dozens of new expensive securityrelated bugs in many Windows applications and is now routinely used in various Microsoft groups. In this paper, we discuss how to perform precise symbolic pointer reasoning in the context of dynamic test generation. We present a new memory model for representing arbitrary symbolic pointer dereferences to memory regions accessible by a program during its execution, and show that this memory model is the most precise one can hope for in our context, under some realistic assumptions. We also describe how the symbolic constraints generated by our model can be solved using modern SMT solvers, which provide powerful constructs for reasoning about bit-vectors and arrays. This new memory model has been implemented in SAGE, and we present results of experiments with several large Windows applications showing that an increase in precision can often be obtained at a reasonable cost. Better precision in symbolic pointer reasoning means more relevant constraints and fewer imprecise ones, hence better test coverage, more bugs found and fewer redundant test cases

    Structural abstraction of software verification conditions

    No full text
    Abstract. Precise software analysis and verification require tracking the exact path along which a statement is executed (path-sensitivity), the different contexts from which a function is called (context-sensitivity), and the bit-accurate operations performed. Previously, verification with such precision has been considered too inefficient to scale to large software. In this paper, we present a novel approach to solving such verification conditions, based on an automatic abstraction-checking-refinement framework that exploits natural abstraction boundaries present in software. Experimental results show that our approach easily scales to over 200,000 lines of real C/C++ code.
    corecore