Precise Pointer Reasoning for
Dynamic Test Generation

Bassem Elkarablieh*!, Patrice Godefroid?, and Michael Y. Levin?

1 UT Austin, elkarabl@ece.utexas.edu
2 Microsoft, {pg,mlevin}@microsoft.com

Abstract. Dynamic test generation consists of executing a program
while gathering symbolic constraints on inputs from predicates encoun-
tered in branch statements, and of using a constraint solver to infer new
program inputs from previous constraints in order to steer next execu-
tions towards new program paths. Variants of this technique have re-
cently been adopted in several bug detection tools, including our white-
box fuzzer SAGE, which has found dozens of new expensive security-
related bugs in many Windows applications and is now routinely used in
various Microsoft groups.

In this paper, we discuss how to perform precise symbolic pointer rea-
soning in the context of dynamic test generation. We present a new
memory model for representing arbitrary symbolic pointer dereferences
to memory regions accessible by a program during its execution, and
show that this memory model is the most precise one can hope for in
our context, under some realistic assumptions. We also describe how the
symbolic constraints generated by our model can be solved using mod-
ern SMT solvers, which provide powerful constructs for reasoning about
bit-vectors and arrays. This new memory model has been implemented
in SAGE, and we present results of experiments with several large Win-
dows applications showing that an increase in precision can often be
obtained at a reasonable cost. Better precision in symbolic pointer rea-
soning means more relevant constraints and fewer imprecise ones, hence
better test coverage, more bugs found and fewer redundant test cases.

1 Introduction

Systematic dynamic test generation [6] consists of executing a program while
gathering symbolic constraints on inputs from predicates encountered in branch
statements, and of using a constraint solver to infer new program inputs from
previous constraints in order to steer next executions towards some new program
paths. This technique is now the foundation of several bug detection tools (see [2,
12,10] among others), including our whitebox fuzzer SAGE [8]. SAGE can handle
large applications and is optimized for handling long symbolic executions at the
x86 binary level. Over the last 18 months, it has detected dozens of new expensive
security bugs in many Windows applications. SAGE is so effective in detecting

* The work of this author was done mostly while visiting Microsoft Research.

void single_array (BYTE x, BYTE y) {
BYTE * a = new BYTE[4];

N = O R

3
3
)
)

if (a[x] = aly] + 2)
assert (false);

delete [] a;

}

Fig.1. An example of a symbolic memory dereference operation. Concretizing the
value of a symbolic address results in adding imprecision to the symbolic analysis.

bugs missed by other techniques like static analysis or blackbox random fuzzing
that it is now used daily in various Microsoft groups.

Dynamic test generation tools vary by the type of programs they can ana-
lyze, the type of constraints their symbolic execution can generate and by the
constraint solver they use. Whenever symbolic execution does not know how
to generate a symbolic constraint for a program statement depending on some
program inputs, the concrete values of those inputs can be used to simplify the
constraint as a fallback [6]. However, these concretizations can result in failing
to exercise program branches and paths, hence in missing bugs, and also in in-
creasing the number of redundant test cases which diverge from their expected
program path.

To illustrate this, consider generating test inputs for the method single_array
in Figure 1 starting with the input tuple {x = 0, y = 1}. When the execution
encounters the conditional statement a[x] == aly] + 2 involving the program
inputs x and y, symbolically evaluating this constraint requires comparing the
values at the symbolic memory addresses &al[x] and &aly]. If the symbolic exe-
cution is not able to reason about symbolic addresses, the concrete values &a[0]
(since 0 is the concrete value of x) and &al1] (since 1 is the concrete value of
y) of those addresses can be used instead, and the constraint alx] == aly] + 2
is then simplified into (x '= 2), which is stored in the path constraint symboli-
cally representing the current execution. Solving the new path constraint (x ==
2) obtained by negating this constraint results in a new input tuple {x = 2, y =
1} which is expected to exercise the other branch of the conditional statement
and reach the assert(false) statement. However, executing single_array with
inputs {x = 2, y = 1} actually results instead in taking the same program path
as the previous one: we call this a divergence. Note that concretizing the sym-
bolic addresses resulted in changing the semantics of the condition from trying
to find two elements in the array that differ by 2, to assigning the value 2 to the
input variable x; this imprecision resulted in both generating a redundant test
input and missing a reachable statement.

In this paper, we discuss how to precisely reason about symbolic pointer
dereferences in the context of dynamic test generation, in order to handle pro-
grams with constraints as in the previous example.

2 Background: Systematic Dynamic Test Generation

Dynamic test generation (see [6] for further details) consists of running the pro-
gram P under test both concretely, executing the actual program, and sym-
bolically, calculating constraints on values stored in program variables x and
expressed in terms of input parameters a. Side-by-side concrete and symbolic
executions are performed using a concrete store M and a symbolic store S, which
are mappings from program variables, i.e., memory addresses, to concrete and
symbolic values respectively. A symbolic value is any expression e in some theory
T where all free variables are exclusively input parameters «. For any variable x,
M (z) denotes the concrete value of x in M, while S(z) denotes the symbolic value
of z in S. For notational convenience, we assume that S(x) is always defined and
is simply M (z) by default if no expression in terms of inputs is associated with x
in S. We also extend this notation to allow M (e) to denote the concrete value of
symbolic expression e when evaluated with the concrete store M. The notation
+ for mappings denotes updating; for example, M’ = M + [m — o] is the same
map as M, except that M'(m) = v.

The program P manipulates the memory (concrete and symbolic stores)
through statements, or commands, that are abstractions of the machine instruc-
tions actually executed. A command can be an assignment of the form =z := e
(where « is a program variable and e is an expression), a conditional statement
of the form if e then C’ else C” where e denotes a boolean expression, and
C’ and C” are continuations denoting the unique next statement to be evalu-
ated (programs considered here are thus sequential and deterministic), or stop
corresponding to a program error or normal termination.

Given an input vector « assigning a value to every input parameter «, the

. . . 3 Cl Cn
evaluation of a program defines a unique finite program ezxecution sy — s1 ... —

sp that executes the finite sequence C4 ..., of commands and goes through
the finite sequence si...s, of program states. Each program state is a tuple
(C, M, S, pc) where C is the next command to be evaluated, and pc is a special
meta-variable that represents the current path constraint. For a finite sequence
w of statements (i.e., a control path w), a path constraint pc, is a formula
of theory 7 that characterizes the input assignments for which the program
executes along w. To simplify the presentation, we assume that all the program
variables have some default initial concrete value in the initial concrete store
My, and that the initial symbolic store Sy identifies the program variables v
whose values are program inputs (for all those, we have So(v) = a where « is
some input parameter). We also assume that all program executions eventually
terminate. Initially, pc is defined to true.

Systematic dynamic test generation [6] consists of systematically exploring
all feasible program paths of the program under test by using path constraints
and a constraint solver. By construction, a path constraint represents conditions
on inputs that need be satisfied for the current program path to be executed.
Given a program state (C, M, S, pc) and a constraint solver for theory 7, if C
is a conditional statement of the form if e then C’ else (C”, any satisfying
assignment to the formula pe A e (respectively pc A —e) defines program inputs

that will lead the program to execute the then (resp. else) branch of the condi-
tional statement. By systematically repeating this process, such a directed search
can enumerate all possible path constraints and eventually execute all feasible
program paths.

The search is exhaustive provided that the generation of the path constraint
(including the underlying symbolic execution) and the constraint solver for the
given theory 7 are both sound and complete, that is, for all program paths
w, the constraint solver returns a satisfying assignment for the path constraint
peyw if and only if the path is feasible (i.e., there exists some input assignment
leading to its execution). In this case, in addition to finding errors such as the
reachability of bad program statements (like assert(false)), a directed search
can also prove their absence, and therefore obtain a form of program verification.

Theorem 1. (adapted from [6]) Given a program P as defined above, a directed
search using a path constraint generation and a constraint solver that are both
sound and complete exercises all feasible program paths exactly once.

In this case, if a program statement has not been executed when the search is
over, this statement is not executable in any context.

In practice, path constraint generation and constraint solving are usually
not sound and complete. When a program expression cannot be expressed in
the given theory 7 decided by the constraint solver, it can be simplified using
concrete values of sub-expressions, or replaced by the concrete value of the entire
expression.

3 A New Memory Model

We now show how path constraint generation can be made sound and complete
in the presence of symbolic pointer dereferences. Throughout the rest of the
paper, we use the term symbolic address e to refer to a symbolic expression in
a given theory 7 that is used as an address, and symbolic content *e to refer to
the content stored at the symbolic address e. We also call xe a symbolic pointer
dereference, or symbolic address dereference. A symbolic address dereference that
occurs during the symbolic execution of a conditional statement or of the right-
hand side of an assignment statement is called a symbolic read operation, while
a symbolic address dereference that occurs during the symbolic execution of the
left-hand side of an assignment statement is called a symbolic write operation.
The address where the content of a program variable v is stored is denoted by
&w.

Our approach for handling symbolic address dereferences is based on the fol-
lowing observations. A symbolic address e (say a 32-bit address) can potentially
point to any memory location within its range of possible values. Considering
all these 232 possible values for each symbolic address dereference e would be
highly expensive and impractical. In contrast, the current concrete address M (e)
of symbolic address e either points to a specific memory location that lies within

a valid, well-defined region in memory, or points to an unallocated memory re-
gion, which is a memory-access violation. A valid memory region is a region of
memory with a known starting address and a size, which we assume here to
be both input-independent, i.e., not symbolic (see Section 4). Such a region can
reside in the heap, stack or data space of the running process.

Therefore, we propose a memory model which splits the entire universe of
possible addresses that each symbolic address e may take into two disjoint sets
defined by the concrete value M(e) of that address: the set of concrete ad-
dresses contained in the valid memory region including the concrete address
M (e), and the rest of the universe. If the concrete address M (e) does not point
to a valid memory region, then a memory-access violation is reported. Other-
wise, we consider two cases: we assume that the symbolic address e is confined
within its valid memory region by forcing its value to be between address and
address+size—1; moreover, we also assert that the symbolic address e is confined
within its valid memory region by checking separately whether its value could
overflow (be greater than address+size—1) or underflow (be less than address),
hence leading to a possible memory-access violation. Both cases can be imple-
mented by simply injecting the new constraint address < e < address + size in
the current path constraint, in the style of “active property checking” described
in [7].

This model can also be extended to deal with multiple pointer dereferences,
such as **e. In this case, a set of valid memory regions can be associated with a
single symbolic pointer dereference, as we will describe later.

To implement this memory model in conjunction with symbolic execution
and path constraint generation, we need to (1) extend the symbolic execution to
handle symbolic address dereferences, (2) determine the valid memory regions
(if any) that may be pointed by a symbolic address, (3) generate constraints
involving symbolic addresses and memory regions (including their contents),
and (4) translate and then solve those constraints using a constraint solver. We
next describe each of those steps in detail.

3.1 Symbolic Execution with Symbolic Address Dereferences

Whenever a symbolic address dereference xe occurs during symbolic execution,
the function get_dereference_expression shown in Figure 2 is called with the
symbolic expression e. This function returns a symbolic expression representing
all possible symbolic values that the symbolic pointer dereference *e may return
given the current concrete store M and symbolic store S.

To compute this expression, the function get_dereference_expression first
calls the function get memory regions (see Figure 2) to determine the set of
valid memory regions the symbolic address e may point to and obtain a mem-
ory snapshot for each of those regions. A snapshot for a valid memory region
(address, size) is defined as the tuple (address, size,m, s) where m and s are
snapshots of the concrete store M and symbolic store S within the addresses
ranging from address to address+size—1. Next, the function add_bound_constraints
is called in order to add a set of constraints to bound the symbolic address within

get_dereference_expression(e) =
let region_snapshots = get_-memory_-regions(e)
add_-bound_constraints (e, region_snapshots)

return create_expression ('*, e, region_snapshots)

get_-memory_regions(e)
let region_snapshots 0
let concrete_values = expand_and_-evaluate(e)
foreach walue € concrete_values do
regions_snapshots = region_snapshots U get_memory_region_snapshot (value)
return region_snapshots

get_memory_region_snapshot (address) =

let < start,size > = get_region_info (address)
let s =0

let m = 0

for address : start — start + size —1 do

m = m + [address +— M (address)]
s = s + [address — S(address)]
return create_region_snapshot (start, size, m, s)

Fig. 2. Constructing a symbolic expression to represent a symbolic address content.

each of the valid memory regions. Finally, it creates an expression for the unary
dereference operation (*) and associates it with the set of memory region snap-
shots the symbolic address may point to.

3.2 Identifying Valid Memory Regions

The function get_memory_regions shown in Figure 2 computes the set of possible
valid memory regions a symbolic address e may point to by calling the function
expand_and_evaluate of Figure 3, which either returns the concrete value of e in
the case e is a pointer, or returns the set of concrete values e can take in the case
e is a pointer dereference. The former case deals with symbolic pointer single-
dereferences, which occurs when indexing uni-dimensional arrays, strings and
object fields, while the latter case handles symbolic pointer multi-dereferences
where a symbolic address depends on previous dereference operations, forming
a chain of dereferences, as when indexing multi-dimensional arrays. For each ad-
dress returned by expand_and_evaluate, the function get_memory_region_snapshot
is called to compute a snapshot of the valid memory region including that ad-
dress. We assume the function get_region_info keeps track of all valid memory
regions currently allocated, either statically by the compiler, or dynamically by
the memory manager during execution. If a given address is not included in
any valid memory region, the function get_region_info detects it and reports a
memory-access violation.

3.3 Adding Bound Constraints

As previously discussed, our memory model both assumes and asserts that every
symbolic address must lie within the bounds of a memory region. Both cases are
implemented by adding a bound constraint in the current path constraint for
every symbolic address dereference. These bound constraints are treated as reg-
ular constraints in a path constraint. During a directed search, those constraints

expand_and_evaluate(e) =
let result =0
match e:
case m: // The symbolic variable m
result = result U M (m)
case +(e', ¢’): // Addition
let f’ = expand_and_evaluate(e’)
let f” = expand_and_evaluate(e”)
foreach = € f’ do
foreach y € f” do
result = result U (z+y)
case xe’:
let regions = get-memory_-regions(e’)
foreach region € regions do
result = result U get_region_concrete_values (region)
etc.
return result

get_region_concrete_values (region) =

let values = 0
for address : region.start — region.start + region.size — 1 do
values = values U region.m(address)

return values

Fig. 3. Partial evaluation of the possible concrete values for a symbolic address.

= :
&x

&y

Region 1 &a[0]
start: &a &a[l]

&a[2]

Ol GO

S
& | X
OO o |y
&a[0]| X

Fig. 4. The symbolic expression tree for the single_array method. The unary (*)
operator represent a symbolic memory dereference and is associated with a snapshot
of the memory at the time of the dereference.

‘NI—'OOHO

are eventually negated and solved. A solution of a negated bound constraint
represents a potential memory-access violation in the program under test.

Given a set of valid memory region snapshots { Ry, Ra, ..., R,,} that may be
pointed to by a symbolic address e, the function add_bound_constraints adds to
the current path constraint a bound constraint of the form

\/(e ==¢;) A (start; < e < start; + size;)

%

where start; and size; denote the base address and size of region R;, and where
e; denotes a symbolic expression such that e == e; holds if and only if e points to
R;. The symbolic expression e; is computed by symbolically evaluating e except
for the last level of dereference in the chain of dereferences defined by e. This
computation is illustrated with the following examples.

Region 3
start: a[1]
size: 3

values

BYTE #% multi_array (BYTE x, BYTE y) { a10:_>2
BYTE #% a = new BYTE=x[2]; g%%:;g
a[0] = new BYTE[2];

a[l] = new BYTE[3];
start: a[0]
a[0][0]=0; a[0][1]=1; SIZFZZA
af1]fo]=2; a[1][1]=3; a[1][2]=4; |¥H&_o
fofe} =9
if (a[x][y] =y + 2)
assert (false);
start: &a
delete [] a; size: 2

}
Fig. 5. An example with a symbolic multi-dereference operation.

3.4 Examples

Consider again the single_array example of Figure 1. Figure 4 shows the ex-
pression tree constructed with our memory model while executing the function
single_array with the input tuple {x = 0, y = 1}. Instead of concretizing the
dereference operations when evaluating the expression a[x] == al[y] + 2, each
dereference operation (nodes *N1 and *N2) is now associated with a snapshot
of memory corresponding to the possible results of the dereference. In order to
cover the then branch of the conditional statement, the extended path constraint
generated with our memory model is now the conjunction of the constraints:

cl: &al[0] == x
c2: &al[1] == 0
c3: &al[2] == 1

c4: &al3] == 2

ch: &a < gal[x] < &a + 4

c6: &a < &aly] < &a + 4

c7: *(&alx]) == *(&alyl) + 2

These constraints are of three types: (1) constraints {c1, c2, c3, c4} rep-
resent the snapshot of the memory region Regionl associated with both deref-
erences, (2) constraints {c5, c6} are the bound constraints for that region, and
(3) constraint {c7} corresponds to the condition at the branch statement. A con-
straint solver can easily solve the conjunction of these constraints and generate
the new test case {x = 3, y = 1} which results in covering the assert(false)
statement. Additionally, by negating the constraints {c6, c7}, we can gener-
ate more test cases such as {x = 10, y = 0} and {x = 0, y = 10} that result in
detecting buffer overflows in the program single_array.

Consider the second example multi_array shown in Figure 5. This program
initializes a multi-dimensional array in the heap, and uses the input variables x
and y to index the array. Figure 5 shows the expression tree constructed with our
memory model while executing the function multi_array with the input tuple {x
= 0, y = 0}. The expression a[x] [y] is a chain of dereferences starting with a[x]
and ending with a[x] [y].

While symbolically executing multi_array, the symbolic dereference sub-expression

a[x] is first encountered and evaluated using get_dereference_expression. As in
the case of single_array, &a[x] is associated with a single region Regionl(&a,2),
the bound constraint &a < &afz] < &a + 2 is added to the path constraint to
force &a[x] within Regionl, and a symbolic expression (node *N1) corresponding
to the dereference operation is returned.

Next, the expression a[x] [y] is evaluated with get_dereference_expression.
First, get_memory_regions uses expand_and_evaluate to compute {a[0], al[1l} as
the set of possible concrete values for &a[x] [y], and uses these values in order to
determine the two regions Region2(a[0],2) and Region3{a[l],3) as the possible
valid memory regions that &a[x] [y] may point to. Then, add_bound_constraints
adds to the path constraint the following bound constraint:

\/ (2alx1 [yl == al0] + y) A (al0] < &alxI[y] < al0] + 2)
(zalx]l [yl == al1] + y) A (al1] < &alx][y]l < al1]l + 3)

Finally, a symbolic expression (node ¥*N2) corresponding to the multi-dereference

operation is returned. The symbolic execution proceeds by building a symbolic
expression for the condition of the branch statement, as previously described.

3.5 Handling Symbolic Write Operations

An assignment statement of the form z := e consists of an expressions e and of
a destination address &x to store e. When executing an assignment statement,
symbolic execution extended with our memory model first inspects the destina-
tion address. If the address is concrete, then the memory stores are updated,
otherwise a symbolic write need to be handled.

As in a symbolic read, a write operation using a symbolic address can po-
tentially update any of the locations pointed to by the symbolic address. To
handle a symbolic write, we first compute the regions that &z points to using
the get_dereference_expression described earlier. Then, we associate a symbolic
update &z — e with those regions.

After the regions are updated symbolically, values in those regions become
nondeterministic, in the following sense: any subsequent read operation from
these regions are considered symbolic reads, even if the address used in the
operation is concrete. For example, consider the code snippet below where x is
an input variable:

BYTE a[4] = {1 ,2 ,3, 4};
a[x]=0;
if (a[3] = 0)

assert (false);

While the expression a[3] does not involve any input-dependent expression,
the result of a[3] is treated as a symbolic read as its outcome depends on
the value of x: if x is 3 then 0 is returned, otherwise 4 is returned. To pre-
cisely model such cases, we treat a[3] as a symbolic read, and evaluates it using
get_dereference_expression as described in Section 3.1.

z3_translate (e, memory) =
match e:

case c¢: // a constant c
return z3_bitvector (c)

case m: // The symbolic variable m
return z3_bitvector_var (m)

case +(e', ¢’): // Addition
let f' = z3_translate(e’)
let f” = z3_translate(e’’)
return z3_bitvector_add (f’, f’7)

case x¢/: // a dereference expression
// Translate the region snapshots associated with e’
let region_snapshots = e’ .region_snapshots
foreach region € region_snapshots do

for address : region.start — region.start + region.size —1 do
memory = z3_store (memory, address, region.s(address))

let f' = z3_translate(e’) // Translate the address

return z3_select (memory, f')
etc.

Fig. 6. Translating a symbolic expression into a Z3 expression.

3.6 Integration with the Z3 SMT Solver

The memory model presented in the previous sections has been implemented in
SAGE [8]. To solve symbolic constraints, we use the Z3 [5] satisfiability modulo
theory (SMT) solver. Z3 is a highly efficient SMT solver that targets program
analysis problems. Z3 supports several theories including integer arithmetic,
fixed-size bit-vectors, arrays, and quantifiers. Z3 also supports sign-extension
operations which are very handy for modeling assembly language instructions.

Array types in Z3 are maps from elements of a domain datatype to elements
of a range datatype. Arrays are treated as un-interpreted functions, not as an
ordered sequence of elements. Z3 provides two operations on maps, select and
store. The select operation on a Z3 array takes a variable of the domain datatype
and returns an existing element in array of the range type. The store operation
on an array A takes an index 7 of the domain datatype and a value v of the
range datatype and returns an array A’ where A’ = A with Ali] == v.

A key advantage of using Z3 is its direct correlation with SAGE’s memory
model. We can rather easily translate SAGE’s symbolic expressions, the memory
regions associated with dereference expressions, and the bound constraints to
73 primitives. Atomic expression representing the constants and the symbolic
variable are modeled as 32 bit-vector Z3 terms. Memory is modeled as a Z3 array
mapping 32 bit-vectors representing addresses into 8 bit-vectors representing the
values.

The translation from SAGE to Z3 is illustrated by the z3_translate function
shown in Figure 6. Primarily, atomic expression representing the constants and
the symbolic variable are translated into 32 bit constants and variables. Binary
arithmetic and relational operations are translated into the corresponding 73
operations. Dereference operation require translating the updates (concrete or
symbolic) that occurred on memory. For a dereference operation the address
expression is first translated. Then for each region associated with the dereference

expression, the updates performed on these regions are translated into store
operations on memory. Finally the dereference operation is translated into a
select operation from memory with the symbolic address as an index.

The result of the z3_translate on the symbolic expressions representing the
program constraints is a Z3 boolean logic formula where, by construction [6],
each free variable corresponds to a program input. If Z3 can solve the formula, it
also generates a model satisfying the formula and this model can be transformed
into a new input assignment to test the program further.

4 Maximum Precision Theorem

Consider a program P containing exclusively (assignment and conditional) state-
ments st(P) whose corresponding symbolic constraints are either expressions in
a given decidable theory 7 (denoted st(P) C T) for which there exists a sound
and complete constraint solver, or are symbolic memory dereferences (read or
write, single or multi dereferences).

Let such a program P be called well-formed if none of its executions can
ever trigger a memory-access violation, i.e., a read or write operation outside
all current valid memory regions, no matter where those regions reside. In other
words, a well-formed program never triggers a memory-access violation even in
the presence of an adversarial memory allocator.

Also, let us say that a valid memory region is input-independent if its start-
ing address and size are both input-independent (i.e., do not depend on any
input and therefore would only have a concrete value if tracked during symbolic
execution).

The next theorem formally states that the memory model presented in this
paper is the most precise there is for any program P as defined above whose
valid memory regions are all input-independent.

Theorem 2. For any well-formed program P as defined above whose valid mem-
ory regions are all input-independent, the memory model and associated path
constraint generation presented in Section 8 are both sound and complete given
a sound and complete constraint solver for the decidable theory T such that
st(P) C T. In this case, a directed search with this path constraint generation
and constraint solver will thus exercise all feasible program paths exactly once.

Proof: (sketch) Consider any program path w and its corresponding path
constraint pc,,. Since program P is well-formed, every symbolic pointer deref-
erence xe points to a value stored in some valid memory region. In that case,
all possible memory regions e may possibly point to are determined using the
algorithm of Section 3.2, and results in bound constraints for those regions as
described in Section 3.3. Then, given a sound and complete solver for 7 such
that st(P) C 7, the path constraint pe,, is satisfiable assuming the bound con-
straints if and only if there is an input assignment that exercises the path w. O

Note that, if a memory-region overflow or underflow is possible along path w,
it will be detected provided that (1) every concrete pointer dereference is checked

for out-of-bound access violation, and (2) every symbolic memory dereference
is preceded in the path constraint pc,, by a bound constraint whose negation is
checked. As shown in [7], both checks (1) and (2) are actually necessary (i.e., one
does not subsume the other). However, in presence of memory-access violations,
the program is no longer “well-formed” and the theorem does not hold: although
memory-access violations may (and will typically) be detected, it is no longer
guaranteed that all feasible program paths will eventually be exercised.

Our memory model assumes that all valid memory regions are input-independent,
i.e., that the address and the size of every memory region are “concrete”. In a
security setting where program inputs are viewed as controlled by an attacker,
assuming that all valid memory regions have a concrete base address is equiva-
lent to assuming memory allocation (such as calls to malloc()) is not controllable
by the attacker, which is often a realistic assumption. With this assumption, our
memory model cannot be used to generate test inputs to violate assertions like
assert(&a > &b) where &a and &b are base addresses of dynamically-allocated
memory regions.

A more practical limitation is our assumption that valid memory regions can-
not have symbolic sizes. Indeed, the amount of memory allocated by a program
can sometimes depend on some program input or the number of those inputs.
However, symbolic reasoning about memory allocation with symbolic sizes is
largely orthogonal to reasoning about symbolic address dereferences, which is
the main focus of our paper, and this other problem can be addressed using
other techniques [14].

5 Related Work and Discussion

The memory model defined in this paper generalizes and extends previously
published ones [12,2] in the context of dynamic test generation. The simple
model in [12] only handles symbolic pointer equalities and inequalities, but
does not support pointer arithmetic, multi-dereferences or symbolic writes, and
cannot be used find the assertion violations in the examples of Figures 1 and 5.

The memory model of [2] is more precise and handles both pointer arith-
metic and symbolic pointer single dereferences. But it does not handle symbolic
pointer multi-dereferences and does not discuss how to deal with symbolic write
operations. Although it can deal with the example of Figure 1, it cannot handle
the example of Figure 5. Moreover, [2] does not discuss when (i.e., for which
programs) its memory model is sound and/or complete. In contrast, the pre-
vious section precisely states when our memory model is sound and complete,
that is, it formalizes under which assumptions our memory model is the most
precise there is. Note that our implementation does not use the optimizations
and iterative constraint-refinement scheme discussed in [2] for translating array
constraints into SAT constraints as we use a SMT solver (namely Z3) which
directly supports array theories.

Memory models used in traditional static program analysis [4, 11] are abstrac-
tions of the stack and heap of the analyzed program. In contrast, our memory

model is very precise and is used in conjunction with a symbolic execution of a
specific program path and concrete execution.

Recent work [3,13,1] discusses how to perform bit-precise reasoning using
static analysis and symbolic execution. The idea is to generate a single SAT for-
mula (possibly refined iteratively) representing the entire program, i.e., all the
possible program executions at once. This approach requires models for all sys-
tem calls and external libraries. Existing implementations often have a strongly-
typed view of memory and do not support arbitrary pointer casting operations.
Moreover, whole-program formula encodings typically become unsound and/or
incomplete in the presence of loops and recursion. Scalability is also problem-
atic and bit-precise analysis is often only intraprocedural, not interprocedural.
In contrast, dynamic test generation considers whole program executions one
by one, which is expensive, but its (interprocedural) symbolic execution can
handle arbitrary system calls and libraries by using testing and concrete values
as a fallback. This way, all bugs found are guaranteed to be sound (no false
alarms), although full path coverage cannot typically be achieved for large real-
istic applications and bugs may be missed. However, in practice, we often have
no alternative, as the complexity and size of applications like those considered in
the next section are beyond the scope of applicability of current interprocedural
bit-precise static analysis tools.

During execution, valid memory regions need to be tracked by instrumenting
dynamic memory allocation. Fairly efficient solutions to this problem are well-
known. In SAGE, this is done using TruScan [9].

Our precise memory model may sound expensive. But note that this is very
much a “pay as you go” model: for instance, if a program never performs any
symbolic pointer dereference, no constraints like those discussed in this paper
will ever be generated. The next section presents results of experiments that
shed light on this cost/precision tradeoff.

6 Experiments

This section presents results of preliminary experiments with our SAGE imple-
mentation of the precise memory model introduced in this paper. The goal of
these experiments is to estimate the benefit and cost of this memory model.
Specifically, we evaluate two configurations: (Old) no symbolic pointer handling
and (New) symbolic read operations with single and multi pointer dereferences.

Experiments were performed with the following applications: a GIF image
processor, a PDF reader, an animated icons parser, a cryptographic certificate
processor, and a ZIP file decompressor. We used the single generation (Genl)
mode of SAGE in which the target application is executed concretely and sym-
bolically on one well-formed seed input file, all the constraints in the path con-
straint for that execution are negated and solved one-by-one in conjunction with
the corresponding prefix of the path constraint (see [8]), and all the resulting
new test cases obtained from each satisfiable constraint are executed concretely
to see whether they exhibit a crash. We measured the total running time of

Benchmark GIF PDF ANI Crypto 71P
Mode Old New | Old New | Old New | Old New | Old New
Total Time (s) 185 190 | 1,060 1,190 | &80 80 310 315 420 420
Symb. Exec. Time (s)| 35 35 190 220 11 10 32 100 35 35
Solver Time (s) 15 17 160 180 2 2 8 65 1.5 1.5
Tests Generated 54 54 | 1,124 1,251 | 129 129 193 167 147 147
Constraints 499 541 | 1,782 1,928 | 318 318 | 350 352 | 272 272
Initial Coverage 83,000 83,000|41,760 41,760|19,100 19,100{73,100 73,100(131,200 131,200
Genl Coverage 89,500 89,700(45,870 45,940{20,300 20,300{76,000 75,800(133,200 133,200

Fig. 7. Microbenchmark statistics.

each SAGE session including testing the new generated test inputs, the time it
took to perform the single symbolic execution, the time taken by the constraint
solver, the number of constraints in the path constraint generated by the sym-
bolic execution, the number of those constraints that were successfully negated
and solved to yield a new test case, the (rounded) initial instruction coverage
obtained by running the target program with the seed input, and the (rounded)
total (Genl) instruction coverage obtained after also running the target program
with all the new test inputs generated.

Results are summarized in Figure 7. The ANI and ZIP programs do not use
any input in any indirect memory accesses. As a result, there were no symbolic
dereference constraints: the new memory model did not have any effect on these
programs. The new GIF run generated more constraints than the old run, but the
same number of constraints were successfully inverted in both runs. Apparently,
some of the constraints that were inverted in the old run become unsatisfiable
and are not inverted in the new run due to increased precision. As a result SAGE
generates fewer divergences and the overall quality of the generated tests is better
in the new run as witnessed by the marginally better coverage produced by the
new run. Note that the symbolic execution and constraint solving times are not
affected by the overhead of the new memory model in those three experiments.

The new PDF run generates more constraints and more tests. Although over-
all coverage is a little better as a result, this comes at a cost: the running time
is slightly higher both because there are more tests to evaluate and because of
the overhead in symbolic execution and constraint solving.

In the Crypto example, we see that although almost no additional constraints
are added by the new run, a significant number of constraints are no longer sat-
isfiable because they contain additional symbolic pointer expressions. Although
symbolic execution and constraint solving incur an overhead with the new mem-
ory model, this time is made up overall because there are fewer new tests to run
and evaluate. The marginal decrease in coverage for the new run is likely caused
by divergences arising from symbolic-execution imprecision that is unrelated to
the memory model.

These results are promising in that we do not observe a drastic overall time
increase as a result of introducing the new memory model. Therefore, even a
small chance of finding a new bug thanks to increased precision justifies the
memory model presented here. At the time of this writing, we do not have

enough experience using the new memory model in production-testing mode
inside Microsoft to comment on the overall impact of the new memory model.

References

1.

10.
11.

12.

13.

14.

D. Babic and A. J. Hu. Structural Abstraction of Software Verification Conditions.
In Proceedings of CAV’2007 (19th Conference on Computer Aided Verification),
Berlin, July 2007.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically Generating Inputs of Death. In ACM CCS, 2006.

. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs.

In Proceedings of TACAS’2004 (Tools and Algorithms for the Construction and
Analysis of Systems), volume 2988 of Lecture Notes in Computer Science, pages
168-176. Springer, 2004.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
January 1977.

L. de Moura and N. Bjgrner. Z3, 2007. Web page: http://research.microsoft.
com/projects/Z3.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random
Testing. In Proceedings of PLDI’2005 (ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation), pages 213-223, Chicago, June
2005.

P. Godefroid, M.Y. Levin, and D. Molnar. Active Property Checking. In Proceed-
ings of EMSOFT 2008 (8th Annual ACM & IEEE Annual Conference on Embedded
Software), Atlanta, October 2008. ACM Press.

P. Godefroid, M.Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In
Proceedings of NDSS’2008 (Network and Distributed Systems Security), San Diego,
February 2008.

S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automatically
classifying benign and harmful data races using replay analysis. In Programming
Languages Design and Implementation (PLDI), 2007.

Pex. Web page: http://research.microsoft.com/Pex.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. In Proceedings of the 23rd ACM Symposium on Prin-
ciples of Programming Languages, pages 16-31, St. Petersburg, Florida, January
1996. ACM Press.

K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine for C.
In Proceedings of FSE’2005 (13th International Symposium on the Foundations of
Software Engineering), Lisbon, September 2005.

Y. Xie and A. Aiken. Scalable Error Detection Using Boolean Satisfiability. In
Proceedings of POPL’2005, 2005.

R. Xu, , P. Godefroid, and R. Majumdar. Testing for Buffer Overflows with Length
Abstraction. In Proceedings of ISSTA’08 (ACM SIGSOFT International Sympo-
stum on Software Testing and Analysis), pages 27-38, Seattle, July 2008.

