23 research outputs found

    Simple Recurrent Units for Highly Parallelizable Recurrence

    Full text link
    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU achieves 5--9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. We also obtain an average of 0.7 BLEU improvement over the Transformer model on translation by incorporating SRU into the architecture.Comment: EMNL

    A Hierarchical Quasi-Recurrent approach to Video Captioning

    Get PDF
    Video captioning has picked up a considerable measure of attention thanks to the use of Recurrent Neural Networks, since they can be utilized to both encode the input video and to create the corresponding description. In this paper, we present a recurrent video encoding scheme which can find and exploit the layered structure of the video. Differently from the established encoder-decoder approach, in which a video is encoded continuously by a recurrent layer, we propose to employ Quasi-Recurrent Neural Networks, further extending their basic cell with a boundary detector which can recognize discontinuity points between frames or segments and likewise modify the temporal connections of the encoding layer. We assess our approach on a large scale dataset, the Montreal Video Annotation dataset. Experiments demonstrate that our approach can find suitable levels of representation of the input information, while reducing the computational requirements

    Training Input-Output Recurrent Neural Networks through Spectral Methods

    Get PDF
    We consider the problem of training input-output recurrent neural networks (RNN) for sequence labeling tasks. We propose a novel spectral approach for learning the network parameters. It is based on decomposition of the cross-moment tensor between the output and a non-linear transformation of the input, based on score functions. We guarantee consistent learning with polynomial sample and computational complexity under transparent conditions such as non-degeneracy of model parameters, polynomial activations for the neurons, and a Markovian evolution of the input sequence. We also extend our results to Bidirectional RNN which uses both previous and future information to output the label at each time point, and is employed in many NLP tasks such as POS tagging

    Deep Neural Machine Translation with Weakly-Recurrent Units

    Get PDF
    Recurrent neural networks (RNNs) have represented for years the state of the art in neural machine translation. Recently, new architectures have been proposed, which can leverage parallel computation on GPUs better than classical RNNs. Faster training and inference combined with different sequence-to-sequence modeling also lead to performance improvements. While the new models completely depart from the original recurrent architecture, we decided to investigate how to make RNNs more efficient. In this work, we propose a new recurrent NMT architecture, called Simple Recurrent NMT, built on a class of fast and weakly-recurrent units that use layer normalization and multiple attentions. Our experiments on the WMT14 English-to-German and WMT16 English-Romanian benchmarks show that our model represents a valid alternative to LSTMs, as it can achieve better results at a significantly lower computational cost
    corecore