2,804 research outputs found

    Evolutionary improvement of programs

    Get PDF
    Most applications of genetic programming (GP) involve the creation of an entirely new function, program or expression to solve a specific problem. In this paper, we propose a new approach that applies GP to improve existing software by optimizing its non-functional properties such as execution time, memory usage, or power consumption. In general, satisfying non-functional requirements is a difficult task and often achieved in part by optimizing compilers. However, modern compilers are in general not always able to produce semantically equivalent alternatives that optimize non-functional properties, even if such alternatives are known to exist: this is usually due to the limited local nature of such optimizations. In this paper, we discuss how best to combine and extend the existing evolutionary methods of GP, multiobjective optimization, and coevolution in order to improve existing software. Given as input the implementation of a function, we attempt to evolve a semantically equivalent version, in this case optimized to reduce execution time subject to a given probability distribution of inputs. We demonstrate that our framework is able to produce non-obvious optimizations that compilers are not yet able to generate on eight example functions. We employ a coevolved population of test cases to encourage the preservation of the function's semantics. We exploit the original program both through seeding of the population in order to focus the search, and as an oracle for testing purposes. As well as discussing the issues that arise when attempting to improve software, we employ rigorous experimental method to provide interesting and practical insights to suggest how to address these issues

    Modelling Socially Intelligent Agents

    Get PDF
    The perspective of modelling agents rather than using them for a specificed purpose entails a difference in approach. In particular an emphasis on veracity as opposed to efficiency. An approach using evolving populations of mental models is described that goes some way to meet these concerns. It is then argued that social intelligence is not merely intelligence plus interaction but should allow for individual relationships to develop between agents. This means that, at least, agents must be able to distinguish, identify, model and address other agents, either individually or in groups. In other words that purely homogeneous interaction is insufficient. Two example models are described that illustrate these concerns, the second in detail where agents act and communicate socially, where this is determined by the evolution of their mental models. Finally some problems that arise in the interpretation of such simulations is discussed

    Capturing Social Embeddedness: a constructivist approach

    Get PDF
    A constructivist approach is applied to characterising social embeddedness and to the design of a simulation of social agents which displays the social embedding of agents. Social embeddedness is defined as the extent to which modelling the behaviour of an agent requires the inclusion of the society of agents as a whole. Possible effects of social embedding and ways to check for it are discussed briefly. A model of co-developing agents is exhibited, which is an extension of Brian Arthur's `El Farol Bar' model, but extended to include learning based upon a GP algorithm and the introduction of communication. Some indicators of social embedding are analysed and some possible causes of social embedding are discussed

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Social Embeddedness and Agent Development

    Get PDF
    Two different reasons for using agents are distinguished: the `engineering' perspective and the `social simulation' perspective. It is argued that this entails some differences in approach. In particular the former will want to prevent unpredictable emergent features of their agent populations whilst the later will want to use simulation to study precisely this phenomena. A concept of `social embeddedness' is explicated which neatly distinguishes the two approaches. It is argued that such embedding in a society is an essential feature of being a truly social agent. This has the consequence that such agents will not sit well within an `engineering' methodology

    Progressive insular cooperative genetic programming algorithm for multiclass classification

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsIn contrast to other types of optimisation algorithms, Genetic Programming (GP) simultaneously optimises a group of solutions for a given problem. This group is named population, the algorithm iterations are named generations and the optimisation is named evolution as a reference o the algorithm’s inspiration in Darwin’s theory on the evolution of species. When a GP algorithm uses a one-vs-all class comparison for a multiclass classification (MCC) task, the classifiers for each target class (specialists) are evolved in a subpopulation and the final solution of the GP is a team composed of one specialist classifier of each class. In this scenario, an important question arises: should these subpopulations interact during the evolution process or should they evolve separately? The current thesis presents the Progressively Insular Cooperative (PIC) GP, a MCC GP in which the level of interaction between specialists for different classes changes through the evolution process. In the first generations, the different specialists can interact more, but as the algorithm evolves, this level of interaction decreases. At a later point in the evolution process, controlled through algorithm parameterisation, these interactions can be eliminated. Thus, in the beginning of the algorithm there is more cooperation among specialists of different classes, favouring search space exploration. With elimination of cooperation, search space exploitation is favoured. In this work, different parameters of the proposed algorithm were tested using the Iris dataset from the UCI Machine Learning Repository. The results showed that cooperation among specialists of different classes helps the improvement of classifiers specialised in classes that are more difficult to discriminate. Moreover, the independent evolution of specialist subpopulations further benefits the classifiers when they already achieved good performance. A combination of the two approaches seems to be beneficial when starting with subpopulations of differently performing classifiers. The PIC GP also presented great performance for the more complex Thyroid and Yeast datasets of the same repository, achieving similar accuracy to the best values found in literature for other MCC models.Diferente de outros algoritmos de otimiação computacional, o algoritmo de Programação Genética PG otimiza simultaneamente um grupo de soluções para um determinado problema. Este grupo de soluções é chamado população, as iterações do algoritmo são chamadas de gerações e a otimização é chamada de evolução em alusão à inspiração do algoritmo na teoria da evolução das espécies de Darwin. Quando o algoritmo GP utiliza a abordagem de comparação de classes um-vs-todos para uma classificação multiclasses (CMC), os classificadores específicos para cada classe (especialistas) são evoluídos em subpopulações e a solução final do PG é uma equipe composta por um especialista de cada classe. Neste cenário, surge uma importante questão: estas subpopulações devem interagir durante o processo evolutivo ou devem evoluir separadamente? A presente tese apresenta o algoritmo Cooperação Progressivamente Insular (CPI) PG, um PG CMC em que o grau de interação entre especialistas em diferentes classes varia ao longo do processo evolutivo. Nas gerações iniciais, os especialistas de diferentes classes interagem mais. Com a evolução do algoritmo, estas interações diminuem e mais tarde, dependendo da parametriação do algoritmo, elas podem ser eliminadas. Assim, no início do processo evolutivo há mais cooperação entre os especialistas de diferentes classes, o que favorece uma exploração mais ampla do espaço de busca. Com a eliminação da cooperação, favorece-se uma exploração mais local e detalhada deste espaço. Foram testados diferentes parâmetros do PG CPl utilizando o conjunto de dados iris do UCI Machine Learning Repository. Os resultados mostraram que a cooperação entre especialistas de diferentes classes ajudou na melhoria dos classificadores de classes mais difíceis de modelar. Além disso, que a evolução sem a interação entre as classes de diferentes especialidades beneficiou os classificadores quando eles já apresentam boa performance Uma combinação destes dois modos pode ser benéfica quando o algoritmo começa com classificadores que apresentam qualidades diferentes. O PG CPI também apresentou ótimos resultados para outros dois conjuntos de dados mais complexos o thyroid e o yeast, do mesmo repositório, alcançando acurácia similar aos melhores valores encontrados na literatura para outros modelos de CMC
    corecore