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Abstract 
In contrast to other types of optimisation algorithms, Genetic Programming (GP)                     
simultaneously optimises a group of solutions for a given problem. This group is named                           
population, the algorithm iterations are named generations and the optimisation is named                       
evolution as a reference to the algorithm's inspiration in Darwin's theory on the evolution of                             
species. 

When a GP algorithm uses a one-vs-all class comparison for a multiclass classification (MCC)                           
task, the classifiers for each target class (specialists) are evolved in a subpopulation and the                             
final solution of the GP is a team composed of one specialist classifier of each class. In this                                   
scenario, an important question arises: should these subpopulations interact during the                     
evolution process or should they evolve separately? 

The current thesis presents the Progressively Insular Cooperative (PIC) GP, a MCC GP in                           
which the level of interaction between specialists for different classes changes through the                         
evolution process. In the first generations, the different specialists can interact more, but as                           
the algorithm evolves, this level of interaction decreases. At a later point in the evolution                             
process, controlled through algorithm parameterisation, these interactions can be eliminated.                   
Thus, in the beginning of the algorithm there is more cooperation among specialists of                           
different classes, favouring search space exploration. With elimination of cooperation, search                     
space exploitation is favoured. 

In this work, different parameters of the proposed algorithm were tested using the Iris dataset                             
from the UCI Machine Learning Repository. The results showed that cooperation among                       
specialists of different classes helps the improvement of classifiers specialised in classes that                         
are more difficult to discriminate. Moreover, the independent evolution of specialist                     
subpopulations further benefits the classifiers when they already achieved good performance.                     
A combination of the two approaches seems to be beneficial when starting with                         
subpopulations of differently performing classifiers. 

The PIC GP also presented great performance for the more complex Thyroid and Yeast                           
datasets of the same repository, achieving similar accuracy to the best values found in                           
literature for other MCC models. 

Key-words: Multiclass classification (MCC), Genetic Programming (GP), Team GP. 
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Resumo 
Diferente de outros algoritmos de otimização computacional, o algoritmo de Programação                     
Genética (PG) otimiza simultaneamente um grupo de soluções para um determinado                     
problema. Este grupo de soluções é chamado população, as iterações do algoritmo são                         
chamadas de gerações e a otimização é chamada de evolução em alusão `a inspiração do                             
algoritmo na teoria da evolução das espécies de Darwin. 

Quando o algoritmo GP utiliza a abordagem de comparação de classes um-vs-todos para uma                           
classificação multiclasses (CMC), os classificadores específicos para cada classe (especialistas)                   
são evoluídos em subpopulações e a solução final do PG é uma equipe composta por um                               
especialista de cada classe. Neste cenário, surge uma importante questão: estas subpopulações                       
devem interagir durante o processo evolutivo ou devem evoluir separadamente? 

A presente tese apresenta o algoritmo Cooperação Progressivamente Insular (CPI) PG, um                       
PG CMC em que o grau de interação entre especialistas em diferentes classes varia ao longo                               
do processo evolutivo. Nas gerações iniciais, os especialistas de diferentes classes interagem                       
mais. Com a evolução do algoritmo, estas interações diminuem e mais tarde, dependendo da                           
parametrização do algoritmo, elas podem ser eliminadas. Assim, no início do processo                       
evolutivo há mais cooperação entre os especialistas de diferentes classes, o que favorece uma                           
exploração mais ampla do espaço de busca. Com a eliminação da cooperação, favorece-se                         
uma exploração mais local e detalhada deste espaço. 

Foram testados diferentes parâmetros do PGCPI utilizando o conjunto de dados iris do UCI                             
Machine Learning Repository. Os resultados mostraram que a cooperação entre especialistas                     
de diferentes classes ajudou na melhoria dos classificadores de classes mais difíceis de modelar.                           
Além disso, que a evolução sem a interação entre as classes de diferentes especialidades                           
beneficiou os classificadores quando eles já apresentam boa performance. Uma combinação                     
destes dois modos pode ser benéfica quando o algoritmo começa com classificadores que                         
apresentam qualidades diferentes. 

O PG CPI também apresentou ótimos resultados para outros dois conjuntos de dados mais                           
complexos, o thyroid e o yeast, do mesmo repositório, alcançando acurácia similar aos                         
melhores valores encontrados na literatura para outros modelos de CMC. 

Palavras-chave: Classificação multiclasse, Programação genética, Programação genética com               
equipes. 
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1.Introduction 
Evolutionary algorithms (EA), including genetic programming (GP), are a class of machine                       
learning algorithms that optimises a group of solutions instead of working with a single                           
solution at a time. This group of solutions is called population as reference to its biological                               
inspiration in Darwin's theory of evolution of the species. Essentially, at each step of the                             
learning phase of the algorithm, the individuals are modified to generate new individuals and                           
the best are selected for the next generation. This selection step emulates the natural selection                             
of Darwin's theory and introduces to EA the ecological relationship of competition. In                         
supervised learning tasks, individuals compete to give the best algorithm solution for a                         
regression or a classification problem. The former problem has a continuous outcome and                         
the latter, a discrete outcome that is the predicted class of an observation. 

Besides EA, there is a profusion of supervised algorithms to solve multiclass classification                         
(MCC) problems, such as K-Nearest Neighbors (KNN), Naive Bayes (NB), Neural                     
Networks (NN), among others. When dealing with classification of three or more target                         
classes, a crucial question arises: how to compare the classes among them, all at once or in                                 
pairs? In practical terms, addressing this question means having either a single classifier to                           
hold the entire classification task or to have as many classifiers as the number of classes to be                                   
modeled. In the latter, the final prediction will be a combination of all classifiers. In GP                               
context, both approaches can be taken. If classifying all classes at once, a single solution will                               
have to distinguish all target classes. If classifying in pairs, GP should be changed from its                               
basic design to generate and evolve more than one solution, since it will need one for each                                 
target class. These one-class classifiers are called specialised individuals. They are grouped in                         
teams, an up-level solution that combines specialised individuals of each class to give the                           
algorithm prediction. Consequently, in this approach, the GP evolution works in an                       
upgraded two-level design, one level for the specialised individuals and another for the teams. 

In addition to the competition relationship, which is always present in GP algorithms, the                           
two-level design of teams-based GP presents an opportunity for the introduction of                       
cooperation between individuals of different specialisations. Cooperation is a mutually                   
beneficial interaction between species (Boucher, 2016) that contrasts with intragroup                   
competition, in which individuals work against each other. Even if not present in GP                           
standard applications, these mutually beneficial interactions among species are ubiquitous in                     
nature and have played a pivotal role for the evolution of life on Earth (Preussger et al.,                                 
2020). The cooperation is present in a team-based GP only if specialised individuals are                           
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allowed to interact over the evolution process. The team operation by itself is not a                             
cooperative, but a collaborative action, since the specialised individuals just work together                       
but do not benefit from this. 

This work presents the development of the Progressively Insular Cooperative (PIC) GP, a                         
cooperative team-based GP algorithm for MCC in which different classifiers can evolve with                         
different levels of interaction and specialised individuals compose the team to make the final                           
algorithm prediction. The main reasoning behind this algorithm is to change the rate of                           
cooperation among individuals of different specialisations during GP evolution in order to                       
keep the balance between learning from specialists of other classes and from other specialists                           
of the same class. Specialists start all in the same GP population but, as the GP evolution                                 
moves forward, the subpopulations of specialists can be progressively separated or completely                       
detached, then working as islands. Thus, the specialised individuals start learning from                       
individuals of any specialisation but become restricted to learn only from individuals of the                           
same specialisation over the GP evolution. 

This can help GP because when specialists of different classes interact, they are helping each                             
other to explore the search space and when they become restricted to interact only with                             
individuals of the same specialisation, the exploitation of the search space is being favoured.                           
It is expected that in the beginning of the GP evolution, the search space exploration will be                                 
more beneficial and as the algorithm evolves, the exploitation will become more important.                         
This is because in the beginning of the algorithm a more intense exploration will allow                             
solutions to look more widely for good regions of the search space and, then, once these good                                 
regions are found, it is more advantageous to intensify the exploitation, i.e. a more detailed                             
look in these good search space regions.  

In a standard GP, some parameters of the algorithm can help to control the search space                               
exploration and exploitation balance, like the initialisation method, the crossover and                     
mutation rates, etc. In PIC GP, in addition to them, the level of interaction between                             
individuals of different specialisations is also used to interfere in this balance. The control of                             
the level of interaction between individuals of different specialisations is done by three                         
parameters: the cooperation intensity rate (CIR), the rate of CIR decrease and the generation                           
in which the algorithm should separate specialised subpopulations previously allowed to                     
interact (demes) into islands. The selection method is changed from the standard algorithm                         
to work with two parents at a time. The first is chosen to balance the number of individuals                                   
among the specialisation classes. The second is chosen according to the CIR parameter and it                             
will control the level of interaction between class specialisations. The CIR is a parameter in                             
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the interval that weights the individuals fitnesses according to their specialisation  0, ][ 1 ∈ ℜ                      

to change the probability of selection of the second parent. If the individuals are in the same                                 
specialisation of the first parent, their fitnesses are not changed, otherwise they are weighted                           
by the CIR. That is, the bigger the CIR, the less the fitness of other specialisation classes will                                   
be decreased and it will allow more interactions among individuals of different specialisation                         
classes. Thus, PIC GP offers a team-based GP in which it is possible to control the intensity                                 
of cooperation among different class specialised groups over the algorithm evolution. 

As in any classification GP, the fitness measure of the specialists is important for                           
differentiating the individuals, since it is this fitness that guides the specialists' evolution. In                           
addition to some largely used classification assessment measures like the accuracy, the area                         
under the receiver operating characteristic curve and the f-score, the present work introduces                         
a new measure called fuzzy accuracy. To calculate accuracy, individuals' real number                       
outcomes are discretised into 0 or 1 by a threshold, with 0 being attributed to one class and 1                                     
to the other. Then, each correct prediction is given a value of 1 and the sum of correct                                   
answers is divided by the total number of predictions. In fuzzy accuracy, each correct                           
prediction is given a value corresponding to the distance between the real number outcome                           
and the threshold used to discretise the prediction. Thus, instead of summing up 1 for each                               
correct prediction in the numerator as in accuracy, the distances between the real number                           
outcomes of correct classifications and the classification cutoff are summed. Therefore, the                       
farthest from the threshold correct outcomes are, the higher the fitness will be. In PIC GP                               
this can be important because the team prediction is made based on the real number                             
outcomes and thus more information can be used for the algorithm prediction. 

The evolution of specialists alone is not enough to produce good teams, which are the                             
entities responsible for the final algorithm classification. It is therefore important to evolve                         
also the teams and in PIC GP, teams evolve in a completely separate process from the                               
individuals' evolution. Teams are made by combining probabilistically the best specialists for                       
each class. These teams then participate in crossover and mutation operations. In the team                           
crossover operation, parent teams will exchange entire specialist individuals of the same                       
specialisation class. In the team mutation operation, new genetic material can come from the                           
specialists population or it can be a new random tree. Moreover, the individual to be replaced                               
can be chosen randomly or probabilistically, favouring the replacement of the weaker                       
specialists in the latter. The team prediction is based on the probability of its members to give                                 
a positive prediction. The class with highest probability is the one taken by the team. As an                                 
alternative, a weighted version of the team prediction is also presented. In this case, the real                               
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number outcomes from the team's members are weighted by the respective individuals'                       
fitnesses, giving higher importance to the outcome of more qualified individuals. 

To assess the effects of the PIC GP parameters in the evolution of specialists and teams as                                 
well as in final GP accuracy, the current work presents experiments with different selection                           
algorithms, different specialists' fitnesses, different CIR values, different CIR decrease rates,                     
different generations in which the algorithm changes from demes to islands, different team                         
prediction methods and different team mutation operators. 

The next sections of this thesis are organised as follows: chapter 2 provides a review of GP,                                 
with its main topics and the state of art in MCC GP; chapter 3 presents the proposed                                 
algorithm, including a discussion of its main features; chapter 4 presents results obtained                         
with the proposed algorithm for multiple datasets; and chapter 5 closes the work with the                             
conclusions and recommended future work. 
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2.  Theoretical background 

2.1. Genetic programming 

Genetic Programming is a very flexible evolutionary Machine Learning (ML) algorithm that                       
can be used for regression or classification in a wide variety of problems. As any evolutionary                               
algorithm (EA), GP corresponds to a metaheuristic optimisation that works on the concept                         
of population, that is a set of candidate solutions that evolves through individuals structure                           
variations and fitness-based selection. In fact, GP can work even as a hyper-heuristic                         
optimisation procedure, that instead of operating directly on the problem search space,                       
operates on the heuristic search space, searching for the heuristics to be used to solve the                               
target problem (Poli et al., 2008). In analogy to biological systems, the solutions are                           
individuals, their structures are their genotype and their fitnesses, their phenotype. The                       
genotype reflects in phenotype, that determines the probability of the individual to survive                         
and to generate new individuals. Simply put, the phenotype drives the genotype                       
perpetuation, but not its modification, since the genotype transformations are made blindly.                       
Moraglio et al. (2012) presented the Geometric Semantic GP (GSGP) in which the operators                           
that produce modifications in the individuals' structure are not completely blind, but reflect                         
modifications in the solution output (its semantic) and the search is based in the error space                               
(the space of the distances between solutions' semantics and the target). This space is                           
unimodal, which ensures that the algorithm will not be trapped in local optima, representing                           
a possible new state-of-the-art machine learning methodology (Vanneschi & Poli, 2012).                     
Other examples of variations of GP widely used are Linear GP (LGP), that evolves computer                             
programs written as linear sequences of instructions (Brameier & Banzhaf, 2007) and Strong                         
Typed GP (STGP), that enforces data type constraints when forming solutions (Montana,                       
1995). 

2.1.1. Tree-based GP 

Part of GP flexibility is due to the flexibility of its solutions and the present work refers to                                   
tree-based GP. Trees are hierarchical, variable-size structures that represent computer                   
programs with nested nodes and terminals. Nodes are elements that combine other elements                         
(one up to many) and terminals are final branch elements. The combination of nodes and                             
terminals allows the solutions to have variable (adaptable) size and to be of different kinds,                             
like computer programs, decision trees, mathematical expressions (called discriminant                 
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functions in GP context) or combined objects. Figure 1 shows an example of a mathematical                             
expression represented as a tree. 

While evolving, GP changes randomly the elements of the trees and this results in changing                             
also their shapes. Therefore, solutions with different shapes interact in GP evolution. Trees                         
satisfy two necessary conditions to be able to interplay with other trees with different shapes:                             
sufficiency and closure. Sufficiency states that the terminals and nodes (in combination)                       
must be capable of representing a solution to the problem. Closure requires that each                           
function of the node set should be able to handle all values it might receive as input (Espejo et                                     
al., 2010). For example, the arithmetic division is usually applied in a protected form to                             
handle with zeros in its denominator. Without these properties the random generated trees                         
could produce a non-valid solution.  

 
 Figure 1: A mathematical expression represented as a tree. Gray objects are nodes and white objects 

are terminals. 

2.1.2. Initial population 

To build the first population, the maximum initial depth and the generation method of its                             
individuals should be chosen. The depth is defined by the number of levels of nested nodes                               
and terminals in a tree. The method defines if the tree will be full, having as many elements as                                     
possible for its maximum initial depth, or if it will have any size (the number of elements of a                                     
tree) and depth as long as it does not exceed the initial depth limit. The former method is                                   
called full and the latter, growth. In practice, a very common GP population initialisation is                             
the ramped half-and-half (RHH) (Koza, 1992) , that creates half of the solutions with the full                               
method and the other half with the growth method. This initialisation also has its limitations                             
because it tends to produce a diversity bias, favouring full trees (Burke et al., 2003).                             
Moreover, the creation of this initial random population is, in effect, a blind random search                             
of the search space of the problem (Koza, 1994), and many alternatives are proposed in                             
literature. For example, for GSGP (Vanneschi et al., 2017) proposed an initialisation                       
algorithm in which the initial population individuals are the best individuals of different                         
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populations (initialised with RHH method) that had already evolved for some generations,                       
thus increasing the variability of individuals in the first population. 

2.1.3. Evolution 

The basic GP design performs two steps in each evolution iteration: the selection of its                             
individuals and their modification to forge the next generation population. Both steps are                         
always performed in a probabilistic way. Thus, the algorithm evolves creating new solutions                         
from previous ones and favouring the selection of the better ones to the next generations                             
until the end of its evolution. The random nature of EA is a key factor differentiating this                                 
family of algorithms from others. In contrast to other ML algorithms, like neural networks                           
for example, the randomness of EA algorithms is present not only in the algorithm                           
initialisation, but over all the learning phase. The evolution can take different directions in                           
each run and thus reach different solutions. Besides that, the best individuals have higher                           
probability of being kept for the next generation even if bad individuals can also survive.                             
However, due to the algorithm's stochastic nature, it can also happen that it loses the best                               
solution of a generation. That is why it's so common to run GP with elitism, a deterministic                                 
operator that keeps the best individual for the next generation. 

 

 Figure 2: GP evolution cycle. Individuals in the population of a given generation (Pgen) are 
probabilistically selected according to some evolution criteria to create a temporary population P'. 
Next, the selected individuals are changed with crossover (X) or mutation (M) to generate new 
individuals in P". The elite individual (circled) is kept unchanged between P' and P''. Later, the 

population Pgen is replaced by P" when it goes to the next generation. Source: the author. 

The random modifications of the solutions are made with a conservative and/or with an                           
innovative variation operator: the crossover and/or mutation, respectively. The former                   
exchanges the genetic material (the structure) between two solutions while the latter                       
produces a random change in the genetic material of one single solution. Figure 2 shows a                               
diagram of the GP evolution. In this example, the only preserved solution is the elite, which is                                 
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reproduced deterministically. Other individuals can also be reproduced depending on                   
algorithm settings. The GP implementation can avoid the use of temporary populations to                         
reduce its computational cost but the basic idea remains the same. Algorithm 1 shows a GP                               
basic implementation. 

2.1.4. Selection algorithm 

Selection algorithms can control specific characteristics of the evolution process, like the                       
solutions size, the population diversity, etc. The most commonly used selection algorithms                       
are: 

▸ Fitness proportional selection: The probability of one individual to be selected is                       
directly proportional to its fitness in maximisation problems or to the inverse of                         
its fitness in minimisation problems. This is also called roulette wheel selection                       
because it can be seen as a roulette wheel where each individual occupies a space                             
proportional to the quality of its fitness. A random event chooses a point in the                             
wheel, selecting the individual whose space contains that point. If the fitness                       
values are too different, it tends to select only the best individuals, reducing the                           
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 Algorithm 1 : Genetic Programming. 

1: Set problem, terminal set and nodes set. 
2: Set population size N, initialisation method, selection and elitism         

methods, crossover and mutation probabilities and termination       
condition. 

3: Create N individuals for the initial population P. 
4: repeat: 
5:     Set individuals fitnesses. 
6:     Starts P' 
7:     repeat: 
8:         Select parent 1. 
9:         if making crossover: 
10:            Select partner 2 and apply the crossover operator. 
11:            Add offspring to P'. 
12:        else if making mutation: 
13:            Apply mutation operator to parent 1 
14:            Add offspring to P'. 
15:        else: 
16:            Add parent 1 to P'. 
17:    until P' has N offspring individuals. 
18:    if using elitism: Apply elitism operator to offspring. 
19:    Replace P with P'. 
20:until maximum number of generations is reached or the best solution           

is acceptable. 
21:return the best-so-far individual. 



chance of weaker individuals to be selected. This can lead the algorithm to a                           
premature convergence, disabling it to properly explore the search space. 

▸ Ranking selection: Instead of using the fitness value, the individuals are ranked                       
according to the quality of their fitnesses. The ranking is used to define the                           
probability of the individuals to be chosen in a fitness proportional selection. 

▸ Tournament selection: A group of n individuals (tournament) is randomly                   
selected from the population, with or without replacement, and the best is                       
chosen amongst them. Since the competition is no longer among all individuals                       
but among a few chosen by chance, this selection reduces significantly the                       
selection pressure, helping the algorithm to avoid premature convergence.                 
Evidently, the bigger the tournament, the higher the selection pressure. 

Countless other selection algorithms have been proposed. One maybe important to mention                       
is the lexicographic parsimony pressure (Luke & Panait, 2006) that aims to prevent bloating.                           
Bloat happens when there is a significant growth of trees during the evolution, leading to an                               
unproportional increase of the solutions size compared with their fitness improvement                     
(Vanneschi & Poli, 2012). This is an important drawback of GP because it slows down the                               
algorithm, making it practically unworkable. The lexicographic parsimony pressure selector                   
modifies the selection to prefer smaller trees when fitnesses are equal (or equal in rank). 

2.1.5. Crossover operator 

The basic implementation of the conservative variation operator is called one-point                     
crossover. It uses two parent individuals coming from two independent selection steps to                         
generate two new individuals. Each parent is broken in a random point, that is the same for                                 
both parents, and the broken up subtrees (the branches below this point) are exchanged.                           
Figure 3 shows an example of the crossover operator that produces two offsprings. There are                             
many variations of this basic crossover operator in literature. For example, the most                         
commonly used crossover generates only one offspring with the root of the first parent and                             
the subtree of the second parent, and discards the second offspring (Poli et al., 2008). Other                               
variations try to improve evolution, especially aiming to control the individuals' growth.                       
Examples include the size-fair crossover, which chooses the second parent subtree to                       
guarantee that it is not too big compared to the first parent subtree, and the homologous                               
crossover, which works like the size-fair but chooses deterministically the most similar                       
subtree in the second parent (Langdon, 2000). 
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 Figure 3: Example of a tree based GP one-point crossover with two offsprings. Source: the author. 

2.1.6. Mutation operator 

The basic GP innovative variation operator is called subtree mutation. It changes the tree in a                               
random point by introducing a new random subtree. Figure 4 shows an example of the                             
subtree mutation operator. There are many variations to prevent trees from growing or                         
changing their structure too much. The importance of preventing uncontrolled tree growth                       
has been explained above. Preventing large changes in tree structure is also important in order                             
to prevent loss of knowledge gained during the evolutive process. Some of the mutation                           
operators proposed in literature are (i) the point mutation that only exchanges a tree element                             
by another with the same arity, (ii) the hoist mutation, in which the offspring is the parent                                 
subtree defined by a random mutation point (Kinnear, 1993) and (iii) the shrink mutation,                           
in which a random parent subtree is replaced with a randomly selected terminal (Angeline,                           
1996). 

 

 Figure 4: Example of a GP tree mutation. Source: the author. 
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2.2. GP for classification problems 

For classification problems, the input data should be mapped by a discriminant            χ ∈ ℜ              
function , such that each observation can be mapped to a class , based on  (χ)g : ℜd → ℜ                       k      

the evidence given by . Since has its image in real numbers, its output needs to be        χ     (χ)g                        

converted to a categorical value. For binary classification, i.e. with two target classes, a                           
threshold can be defined to separate the image values of that correspond to one class                    (χ)g            
from those that correspond to the other. A common application is to transform the GP                             
output with the logistic sigmoid function (Eq. 1) and to use the threshold value 0.5. In this                                 
case, the tree solution is made up by the logistic function as the root node and the evolved                                   
tree attached to it. 

                                                      (1)(x) S =  1
 1 + e   ( −x )  

Apart from tuning GP parameters, some authors propose modifications in the basic GP                         
design to handle binary classifications. Eggermont et al., 1999 presented a study with GP for                             
binary classifications using stepwise adaptation weights and atomic features representation.                   
The former increases progressively the weights of observations misclassified by the best                       
solution to evaluate the fitness in the subsequent generation. The latter transforms all                         
features into binary values, making tree nodes with more simple functions and increasing the                           
interpretability of the model. 

The classical GP returns just one discriminant function. Therefore, if the objective is                         
multiclass classification (three or more target classes), the classical GP design won't work and                           
a modification is required. There are two possible strategies to adapt the classical GP design                             
to MCC GP, the wrapper or the direct approaches. They are summarised in Figure 5 and                               
described below. 

 

 Figure 5: Strategies for multiclass classifications with GP. Source: the author. 
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2.2.1. Wrapper strategy 

The wrapper strategy consists in applying GP to features transformation or features selection                         
to enhance posterior multiclass classification by other algorithms. For example, Muñoz et al.                         
(2015) used GP to project the dataset instances into a transformed space where the data of                               
each class can be grouped into unique clusters. Then, their Mahalanobis distances to the                           
clusters' centroids were evaluated and each instance was assigned to the closest cluster. In                           
Raymer et al. (1996) the GP solutions transformed the data features and these transformed                           
features were used as input for a KNN classifier. In Tan et al. (2005) a similar approach was                                   
taken, but using a Bayesian classifier. Al-Madi & Ludwig (2013) presented a wrapper MCC                           
GP method in which a K-Means algorithm was fed with the GP solutions outputs. 

2.2.2. Direct GP strategy 

The direct GP MCC strategy consists in evolving a GP capable of providing a solution that                               
gives the classification prediction directly, without any posterior classifier procedure. More                     
attention is given to Direct GP strategies in this thesis because it was the one applied in the                                   
present work. The concept behind Direct GP is equivalent to the one used in GP for binary                                 
classification, but extended for many target classes. When comparing three or more classes,                         
the very first decision is how to compare them. Three possibilities exist, which are explained                             
in more detail below: all-vs-all, all-vs-others or one-vs-all. 

2.2.2.1. All-vs-all comparison 

This is the most simple extension of the binary classification approach. In this strategy, a                             
single GP solution is generated and K-1 thresholds are applied to its outcomes for a K classes                                 
problem. A single model must therefore be able to discriminate among all classes. Zhang &                             
Smart (2004) give an example of a single classifier with K-1 thresholds dynamically evolved                           
during the GP run. Usually, this approach is less likely to produce good models, since it will                                 
have to handle all the problem complexity at once. 

2.2.2.2. One-vs-others comparison 

In this comparison, the problem of classifying K classes is decomposed into                        K )K * ( − 1  
binary problems, contrasting each class with others in pairs, to generate K classifiers, one for                             
each target class, and combining their predictions in a final algorithm result. Kishore et al.                             
(2000) presented a MCC GP in which the dataset was split through K classes instances. To                               
evolve each of the K classification models, a dataset containing interspersed classes splits of                           
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the target class with each of the other classes was built to compose the training set. With these                                   
training sets, the authors evolved a GP run for each class solution and evaluated a measure                               
called strength of association, that assesses how much the solution was associated with its                           
class. This measure was used to decide which solution prediction was chosen as the final                             
algorithm prediction when more than one class model gave a positive prediction. The                         
algorithm fitness was the classification accuracy. Silva & Tseng (2008) also used                        K )K * ( − 1  

binary problems with pairwise comparisons but the classifiers were assessed together for the                         
GP fitness, evaluating the percentage of points assigned to more than one class. The goal of                               
the GP was to minimise this value, abdicating a pos-processing to combine the classifiers'                           
predictions. 

2.2.2.3. One-vs-all comparison 

In this comparison, the problem of classifying K classes is decomposed into K binary                           
problems, contrasting each class with all others once, to generate K classifiers, one for each                             
target class. The predictions of these K classifiers are then combined in a final algorithm                             
result. In GP context, these K classifiers can be evolved in four different ways: 

(i) In independent runs, simply running the algorithm K times, one for each                       
class, with the dataset split for the corresponding one-vs-all comparison. 

(ii) In the same run, but in different subpopulations. The subpopulations can be                       
totally separated or they can interchange their individuals. If individuals                   
cannot interchange between subpopulations, the subpopulations are called               
islands. Otherwise, the subpopulations are called demes (Wilson, 1977). 

(iii) All together in the same population, but as independent individuals. The                     
individuals evolve as in a standard GP implementation, but at each                     
generation they are evaluated and set to be responsible for classifying one of                         
the target classes. 

(iv) All together as a team. It corresponds to evolving all classifiers in the same                           
population together, dependently. The team is an individual in which the                     
root node combines the results of its members. Each teammember is a single                           
threshold classifier that is specialised in a corresponding class. Both the team                       
and its members evolve in the GP process. Thus, the two-level nature of                         
evolving K classifiers that are combined to be a single GP solution becomes                         
explicit in this approach. Evolving only the specialists can produce strong                     
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individuals that perform poorly for the combined prediction. Nevertheless,                 
the specialists should also evolve individually to be able to improve the team's                         
output. For that to happen, it is necessary to define their individual evolution                         
criteria, i.e. their individual fitness. Therefore, the team's approach creates a                     
new decision requirement that is to define how the team fitness will be shared                           
and distributed among the team's members. This is called the credit                     
assignment problem (Brameier & Banzhaf, 2007). The team outcome will be                     
the class whose specialist member gives a positive result. It could happen that                         
more than one teammember gives a positive result for the same data instance.                           
Then, the team will require a disambiguation procedure, to define which of                       
the positive classes will be its final classification result. 

There are many studies in literature using these approaches. For example, Lin et al. (2007)                             
used the (i) independent runs approach, proposing a multi layer with independent multi                         
populations GP for MCC problems. In each run, the first layer used the training set                             
configured for one specific target class. Before the last layer the proposed GP had many                             
solutions, one for each population. In the last layer, the solutions obtained in the previous                             
layer were combined in a single population, and a single GP solution was produced. The final                               
prediction decision was given by a measure called z-value (Chien et al., 2004). This measure is                               
obtained by splitting the training set to produce statistics for the classifiers and these statistics                             
are used in a disambiguation step, if necessary, to decide the final classification. Chen & Lu                               
(2007) used the (ii) island subpopulation approach in which the specialised solutions of a                           
MCC GP evolved using the convex hull of the Receiver Operating Characteristic (ROC)                         
curve as their fitness measure. Then, for each observation the classifiers made their                         
predictions and the final GP prediction was decided by majority voting among classes                         
models. Smart & Zhang (2005) used the (iii) all together with independent individuals                         
approach for evolving all classifiers in a single GP run with solutions evaluated for every                             
target class at each generation. The solution that provided the best separation for a binary                             
class problem was assigned to be the classifier of that class. For the GP prediction, the data                                 
instance was evaluated by all K solutions and was assigned to the class to which it has the                                   
highest probability of belonging to. 

Haynes et al. (1995) published pioneering work using the (iv) team's approach with STGP.                           
Their focus was in the role of the crossover operator in making team populations evolve in                               
coordination. The presented crossover operator essentially controlled if individuals                 
specialised in classifying a target class could exchange genetic material with individuals                       
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specialised in other target classes. In a later and more complete publication, Haynes & Sen                             
(1997) proposed five crossover operators: (1) the team-branch, in which the exchange can                         
occur between any specialist of one team at any point and any specialist of another team at                                 
any point; (2) the team-all, in which every specialist of a team exchanges genetic material at                               
two independent random points with the correspondent specialist of another team; (3) the                         
team-all-random, in which every specialist of a team exchanges genetic material with random                         
specialists of another team (not necessarily of the same specialisation); (4) the team-uniform,                         
that randomly sets pairs of specialists, one from each parent team but from any specialisation                             
class, to participate in the crossover. Then, these paired specialists exchange genetic material                         
at random points; and (v) the team-k-cross, in which a defined number (k) of crossover                             
points are defined in each team, independently of how many there will be in each specialist.                               
For the problem the author studied, the team-uniform was the best crossover operator, since                           
it sped up the evolution and increased the team fitness (that is, the GP fitness its own). 

There are also mixed approaches. In Brameier & Banzhaf (2007), the authors applied the                           
team approach together with the demes subpopulation approach for two binary                     
classifications and a regression problem with LGP. Lichodzijewski & Heywood (2008)                     
presented a mixed independent individuals and team approach, in a GP that evolves the                           
training subset (called point population), the individual binary classifiers and the team, each                         
in a separate evolution process. The training set populations had the objective of selecting                           
useful training sets for the classification task. The classifiers population had the objective of                           
evolving good binary predictors. Finally, the team had the objective of evolving good                         
multiclass predictors. Soule & Komireddy (2007) also presented a mixed independent                     
individuals and team approach in which specialist individuals evolved in islands. At each GP                           
generation, for each specialisation class two individuals were selected for crossover and                       
mutation. The offsprings replaced two low fitness teams. Thomason & Soule (2007)                       
presented a variation of this approach in which teams are selected and replace individuals in                             
islands too. 

The next section presents the new design developed in this work for a MCCGP with a mixed                                   
approach for independent individuals and teams evolution. 
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3. Progressively insular cooperative GP 

In the real world there is no definitive best strategy between having strong individuals that                             
can perform extremely well on their own or having just good individuals that together can do                               
a great job. It depends mostly on the task. However, in a probabilistic reasoning, as used in                                 
MCC GP context, the best of both worlds can be explored: strong individuals that can                             
interplay well will produce a more robust outcome. When the individual has to work on its                               
own, it does its job well and when the team cooperates, it improves the individuals' good                               
decisions. It is like having a "dream team" to produce the best possible result. 

The present work proposes the Progressively Insular Cooperative (PIC) GP, a one-vs-all                       
mixed individuals and teams approach for cooperative MCC GP. Subpopulations of                     
specialist individuals begin as demes but further in the algorithm evolution they can become                           
islands. The main idea is to create a flexible cooperative GP in which specialists can be strong                                 
individually but also good in cooperating. For this purpose, the rate of interaction between                           
specialists of different classes can be changed over the algorithm evolution. It can vary from                             
unrestricted cooperation to no cooperation at all. Specialists evolve independently from the                       
teams' evolution. The teams evolve with improved individuals, giving priority to the stronger                         
ones but also giving the chance to weaker individuals to participate in the team.  

It is important to evolve the team because it is the team that makes the final multiclass                                 
classification. However, this brings two difficulties to GP: (i) the credit assignment, already                         
mentioned in section 2.2.2.3 One-vs-all comparison, and (ii) the fact that the specialist                         
individuals do not evolve enough when the evolution is guided by the teams' performance                           
(Soule & Komireddy, 2007). The credit assign problem is hard to solve because when                           
individuals interact they create synergy, i.e., the effect of their combined work can be bigger                             
than the sum of the effect of the individuals separately. The second difficulty, the limitation                             
of specialists' development in a team-based evolution, is related to the fact that if individuals'                             
evolution is associated with the team's evolution, the search space exploration by the                         
individuals can be slowed down. For example, it can happen that some change in the                             
individual's structure would produce an improvement in its own performance, but a decrease                         
in the team's performance. In this case, the individual will not be allowed to change, which                               
means that it is not allowed to explore the search space properly. 

The balance between exploration and exploitation of the search space is decisive in GP                           
performance. Depending on the problem and on the algorithm settings, it can be more                           
advantageous to promote one or other. Exploration means to look more widely, broadly, to                           
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farther sections of the search space. Exploitation means to look more closely, in more detail,                             
to a pre-explored search space section. To have too much exploration means to do a random                               
walk in the search space and to have too much exploitation means to be trapped in a small                                   
portion of that. It is not guaranteed that specialists that evolve without being guided by the                               
teams' evolution will properly explore and exploit the search space. Nonetheless, if their                         
evolution is independent from the teams, it will be easier to control this balance. That is why                                 
it is important to allow specialist individuals to evolve by themselves. As explained above, the                             
specialist individuals evolution in a team-based GP can be done through islands, totally                         
separated subpopulations, or demes, overlapping subpopulations. Working with               
specialisation islands can restrain the search space exploration because solutions tend to                       
become all similar through the GP evolution process, depending on the algorithm and                         
problem configurations (Leung et al., 1997). It is not guaranteed that having all individuals                           
in the same population, an extreme full demes situation, permitting them to exchange genetic                           
material with individuals from other specialisations indiscriminately, will work. On one                     
hand, it can lead solutions to explore novel and worthy portions of the search space. In a                                 
tree-based GP, e.g., one specialist solution can share a part of its tree that is crucial for                                 
discriminating its class and thus to help another specialist tree in separating its own class                             
instances from those of the class of the specialist that had shared the code. On the other hand,                                   
one specialist solution can share just irrelevant genetic material, making new solutions                       
explore novel but worthless areas of the search space that will not contribute to their                             
improvement. 

In a traditional GP, solutions have all the same specialisation and the balance between                           
exploration and exploitation is carried mainly by crossover and mutation rates and the                         
selection pressure, which will define which solutions will go over mutation and which will go                             
over crossover to form the next generation population. In a cooperative GP, the interaction                           
among specialists can also help to control this balance. In a LGP study, Luke & Spector                               
(1996) found that restricting the interaction of the individuals with individuals of the same                           
specialisation improved the algorithm performance. Soule (2000) made experiments in a GP                       
regression problem and concluded that heterogeneity among teams is necessary but not                       
sufficient, while individuals' high specialisation, that is related with heterogeneity, is key for                         
improving the algorithm performance. Nevertheless, it is not yet clear in literature how to                           
benefit from the balance between cooperation and the evolution of highly specialised                       
individuals to properly explore and exploit the search space. 
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In the present study, variations in the level of specialists interaction over time during                           
algorithm evolution were explored. Individuals begin the algorithm distributed in class-based                     
demes that detach over the evolution process up until working fully as islands. The idea is to                                 
enable the search space exploration more intensively in the beginning of the evolution and, as                             
the individuals become more prepared for their specialised task, to intensify the search space                           
exploitation. 

Figure 6 shows a diagram of the PIC GP evolution. Part A shows in detail the specialists                                 
evolution. In the initial phase, specialists are in demes, that work like overlapping                         
subpopulations. Two individuals specialised in different classes can undergo a crossover                     
operation and generate offspring for any class. The level of interaction among demes                         
decreases at each generation. Later the algorithm starts working in the islands phase, when                           
individuals can make crossover only with individuals of the same specialisation class. Part B                           
of this figure shows the teams' evolution. Initially, teams are composed of the best individuals                             
from the specialists' population. Then, at the start of each generation, new teams are created                             
with evolved specialists that are included in teams' population to participate in the selection                           
process. This means the teams' evolution receives an input of new genetic material at each                             
generation. If this new genetic material didn't come from the specialists' population, this                         
insertion could be prejudicial to the GP evolution, making the algorithm vary too much and                             
to lose a significant portion of the learned information. However, the new genetic material                           
was already improved by the specialists' evolution. After selection, the teams' evolution                       
follows the standard GP steps, crossover and/or mutation, to create the next generation                         
population. 
The next sections describe in detail how each step of PIC GP works and its entire algorithm is                                   
described in Algorithm 4. 

3.1. Specialists evolution components 

3.1.1. Solutions structure 

The specialists are trees with a specialisation class. To classify instances, the tree has a logistic                               
function (Eq. 1) at its root node and uses the trheshold 0.5 for classes discrimination. 

The definition of the class in which individuals are specialised can be done in two ways. It                                 
can be automatic, simply set by the class for which the individual works better, i.e., has a                                 
higher fitness. Or it can be assigned by the algorithm to balance the number of specialists in                                 
the population. 
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 Figure 6: Progressively Insular cooperative GP. A: the specialists' evolution process. It begins with 
demes that can be transformed into islands over the algorithm evolution. B: the parallel teams 

evolution that at each generation receives new teams from the specialists population (2) and proceeds 
with a traditional GP selection and variation steps. Source: the author. 

3.1.2. Solutions fitness measures 

As mentioned in Chapter 2, the fitness is responsible for guiding the evolution direction.                           
Since in PIC GP the specialised solution's goal is to make predictions for one single class, its                                 
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fitness is a measure of the quality of the classification of the class in which the solution is                                   
specialised. It can be one of the four following options: 

▸ Accuracy: it is the percentage of corrected classified observations for a given class. It is                             
calculated as follows: 

                                       ( 2)cc  a k =  #T P  + #T Nk k
#T P  + #F P  + #T N  + #F Nk k k k

 

, where is the number of true positive classifications for class k, is the    T P# K                       T N# K      
number of true negative classification for class k, is the number of false                F P# K            
positive classifications for class k and is the number of false negative            F N# K              

classifications for class k.  

▸ Fuzzy accuracy: it is a measure of the strength/certainty of the predictions that are                           
obtained. This is made by the application of a fuzzy concept on the accuracy                           
evaluation taking into account that the last step for obtaining predictions is the                         
conversion of a continuous outcome, the logistic value of the solution, into a binary                           
value. Generally, the farthest the logistic value is from the threshold in the direction                           
of the correct prediction, the more trustworthy the prediction should be. The                       
opposite is also true, because if the outcomes are all close to the threshold, small                             
variations in the input data will more easily make the resulting logistic value cross the                             
classes threshold. Surely, this relation will depend on the statistical distribution of the                         
features and on the tree structure. It is calculated as follows: 

 

                                   (3)  l  Δ T k =  N

 (l −0.5)  + (0.5−l )   ∑
 

 
2* T k

 ∑
 

 
2* T k

 

 

, where are the logistic outcomes of true positive classifications, are the    lT k                   lT k      

logistic outcomes of true negative classifications and N is the total number of                         
instances. 

▸ Receiver Operating Characteristic (ROC): The ROC curve is a tradeoff between                     
sensitivity and specificity. For a single threshold point on the curve it becomes a                           
simple arithmetic mean between the true positive and the true negative rates and it                           
can be evaluated as (Chien et al., 2004): 

                                 (4)OC  .5  R k = 0 ×    ( #P k

 #T P  k +  #Nk

 #T N  k )  
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, where is the number of positive instances of the class k and is the    P# K                         N# K      
number of negative instances of the class k. 

▸ F-score: it is the harmonic mean of precision and recall rates of a target class: 

  , where:                   ( 5)core  f − s k =  precision  + recallk k

2  precision   recall  * k * k  

                                        ( 6)recision   p k =  #T P k
 #T P + #F Pk k 

 

    and                                               (7)ecall  r k =  #T P k
 #T P  + #F N  k k

 

The precision assesses the proportion of positive results that truly are positive and the                           
recall assesses the proportion of correctly classified positives.  

3.1.3. Specialists initial population 

To ensure that there will be specialists of all classes in the initial population, after generating                               
initial trees with the RHH method, the individuals are equally relocated over the classes. For                             
each class, only the best individuals are kept, where N is the size of the entire specialists        /KN                            
population and K is the number of target classes. If there are more than individuals                            /KN    

specialised in a class, the remaining are randomly changed to other specialisation classes in                           
which the number of individuals are less than . If is not a natural number, the                /KN     /KN              
next natural number is used. 

Individuals that are relocated tend to have worse fitnesses and individuals that are not                           
relocated will start from a better point. It is expected that the GP evolution will improve                               
them all. Thus, the naturally best individuals for classifying a class are used for this and the                                 
others have to learn to make the classification that they are designed for. Algorithm 2 shows                               
the PIC initialisation method. 
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 Algorithm 2 : Specialists population initialisation. 

1: Define the population size N as a multiple of K. 
2: Generate N individuals with rhh method. 
3: for each k in target classes: 
4:     Keep the N/K best individuals and store the others. 
5: Shuffle stored individuals. 

6: for each m in subpopulation classes with less than N/K individuals: 
7:     while m has less than N/K individuals: 
8:         Include a stored individual. 

9:         Re-calculate the fitness of the included individual for the 

new class specialisation. 



3.1.4. Specialists selection algorithm 

In specialists' population, if the algorithm is in the demes phase, the selection algorithm                           
works with two individuals at a time. The first individual is selected with roulette wheel or                               
tournament selectors. To keep the balance of specialists in the population, this individual is                           
chosen from a specific deme or island. The second parent is, then, selected with roulette                             
wheel or tournament over the entire population with the fitnesses weighted by the                         
cooperation intensity rate, the parameter that controls the quantity of interaction between                       
individuals from different specialisations. The algorithm 3 shows the PIC specialists'                     
selection methods for the demes algorithm phase. 

Note that the selection does not determine the class of the second parent. Moreover, it is not                                 
guaranteed that the offspring individuals will belong to the same specialisation class as the                           
parents. Consequently, in the end of a generation, the proportion of individuals in each                           
specialisation may change. Despite this, to control the class of the first parent, it is enough to                                 
keep the number of individuals in specialisation groups approximately balanced. 

3.1.5. Cooperation intensity rate 

This parameter is used to lower the fitness of individuals from other specialisations when                           
specialists are competing in the second parent selection step, according to: 

   , if                                    (8) f  f ′i =  i ×   ≠ kki 1  

 , otherwise. ff ′i =  i        
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 Algorithm 3 : Specialists ' selection method for demes algorithm phase. 

1: Define k, the class of the first parent according to the class that             

has less individuals in the new generation population. 

2: if selection method is roulette wheel: 
3:     for each individual in population: 
4:        if the individual hasn't the specialisation class k: ≠  

5:             Recalculate its fitness: 

6:             f' = f * 𝜂 
7:     Select the second parent from the entire specialists population. 

8: else: 

9:     Select tournament_size individuals from the entire population. 
10:    for each individual in tournament: 
11:        Recalculate its fitness: 

12:        f' = f * 𝜂 
13:    Select the individual with higher f' for the second parent. 
14:return both parents. 
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, where is the i-th individual's fitness, 𝜂 is the cooperation intensity rate, is the i-th    f i                         ki      
individual's specialisation class and is the specialisation class of the first selected parent.k1   

The cooperation intensity rate (CIR) can be decreased over the evolution process by the                           
decrease rate, another parameter of the algorithm. The decrease rate reduces constantly at                         
each generation the rate of interaction among specialists over the GP evolution. This decrease                           
does not convert the algorithm to the island approach when using the tournament selection                           
for the second parent, even if the CIR goes down to zero. If the CIR is zero, the fitness of the                                         
specialists from other classes than the class of the first parent will all be zero. Despite that, it                                   
can happen that the tournament is composed of these individuals of other specialisation                         
classes because the tournament is made randomly, without considering the individuals'                     
fitness. Therefore, the subpopulations will still be demes, since they will still interact. 

When using tournament selection for the second parent, to transform the algorithm from                         
demes to islands phase, a phase change parameter is needed. It is the generation in which the                                 
algorithm should change the approach from demes to islands subpopulations. 

Thus, with these two parameters, the CIR decay and the phase change, the demes could                             
begin the evolution with overlapping areas that would be reduced over the generations up to                             
a moment in which they have no more overlapping areas and are transformed into islands. 

3.1.6. Crossover and mutation specialists operators 

For crossover and mutation, the PIC GP uses the one point crossover with two offsprings                             
and the one-point mutation operators. 

3.2. Teams evolution components 

3.2.1. Teams structure 

A team is a tree with a prediction function at its root node, with arity of K, being K the                                       
number of target classes in the dataset, and with one specialist of each class in each of its                                   
branches. The specialists' structures are not changed on teams' evolution. It can be seen as if                               
the teams' building blocks were not other trees themselves, but black-box classifiers.                       
Considering that individuals can already exchange genetic material among them in a parallel                         
evolution process that is dedicated to their improvement, it is assumed that there is no any                               
major advantage in making individuals evolve into the teams' population.  
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3.2.2. Teams prediction 

When working with teams for MCC, if only one of its members gives the positive prediction,                               
it is the specialisation class of this member that will be the GP prediction. However when                               
there is more than one positive result among team members, some technique is necessary to                             
decide which prediction to choose. 

In the present work, the team prediction is given by one of the following options: 

▸ Softmax: it uses the softmax (Eq 9) result of the specialists' logistic outcomes. 

                                      (9)(z)  ,  j 1, ..., Kσ j =  ezj  

   Σe   zk  =     

The softmax function normalises the input values into a probability distribution                     
consisting of probabilities that are proportional to the exponentials of the input                       
values. Therefore, the team's decision is to choose the classifier that gives the higher                           
probability of a positive outcome. 

▸ Specialist weighted: it considers that not all the team members have the same quality                           
in their predictions. So, before using the specialists logistic outcomes in the softmax                         
function, the individuals logistic outcomes are weighted by their respective fitness,                     
which is a measure of their individual prediction abilities. It is calculated as follows: 

                                                          (10) fl′ =   × l  

, where is the fitness of the specialist and is its logistic outcome for a single data    f                l                
observation. 

3.2.3. Teams initial population 

The teams' population starts with one special team, deterministically created with the best                         
specialist of each class from the specialists' population. The other teams are created with                           
specialists selected with a roulette wheel selection from the specialisation subpopulations. 

3.2.4. Teams elitism 

If the best team has the same fitness as the previous best team, the best team with the best                                     
fitness for the test partition is kept in the population deterministically. Otherwise, if the best                             
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team of a generation has better fitness then the best-so-far team, the new team is kept in the                                   
teams' population. 

3.2.5. Teams crossover operator 

The crossover operator of teams exclusively allows them to exchange entire branches of the                           
same class. In other words, they can only exchange specialised individuals for individuals of                           
the same specialisation class. Figure 7 shows an example of the teams crossover operator. 

 
 Figure 7: Teams crossover. Teams exchange entire specialist trees from the same class. Source: the 

author. 

3.2.6. Teams mutation operator 

The mutation operator is responsible for the innovative changes in GP individuals, which is                           
important to allow the algorithm to explore the search space. Tree teams mutations are                           
implemented in PIC GP. 

▸ Random teams mutation: this is the most innovative teams mutation operator. A                       
random specialist is substituted by a new random tree (Figure 8A). 

▸ Specialist teams mutation: a random specialist is substituted by an individual with the                         
same specialisation from the specialists' population. This is less innovative than the                       
random teams mutation, but it still can provide more innovation than the                       
introduction of new teams in the selection step because it does not prioritise the best                             
individuals (Figure 8B). 

▸ Weaker specialist team mutation: it works like the specialist teams mutation, but                       
instead of removing a random specialist from the team, it chooses the specialist to be                             
exchanged with a probability inversely proportional to the individuals' fitnesses                   
(Figure 8C). 
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 Figure 8: Teams mutation operators. Random: a random specialist is exchanged by a new 
random tree. Specialist: a random specialist is exchanged by a random individual with same 
specialisation in from specialists' population. Weak specialist: works like the specialist teams 
mutation, but the mutation point is chosen with inversely proportional probability to the 

team individuals' fitnesses. Source: the author.  
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 Algorithm 4 : PIC GP Algorithm. 

1: Set: 

2:     generations G, target classes K 
3:     specialists population size N, teams population size M 
4:     specialists crossover and mutation probabilities 

5:     teams crossover and mutation probabilities 

6:     specialists elitism, teams elitism 

7:     specialists selection methods, teams selection method. 

8:  Initialise specialists sp_population. 
9:  Initialise teams tm_population. 
10: for each g in G: 
11:    Instantiate sp_population'. 
12:    until sp_population' size is smaller than N: 
13:       Select two specialists with specialists selection. 

14:       if makes crossover: 
15:          Apply specialists crossover to parent specialists 

16:          Set the specialisation class and fitness of offsprings. 

17:       if makes mutation: 
18:          Apply specialists mutation to parent specialists 

19:          Set the specialisation class and fitness of offsprings 

20:       Add offspring 1 to sp_population'. 
21:       if sp_population' size is smaller than N: 
22:          Add offspring 2 to sp_population'. 
23:    if apply specialists elitism: 
24:       Apply elitism to sp_population' 
25:    Replace sp_population with sp_population'. 
26:    for i from 0 to i < M/2: 
27:       Instantiate a team t. 
28:       for each class in K: 
29:           Select a class K specialist from sp_population. 
30:           Put the selected specialist in t. 
31:       Add t to tm_population. 
32:    Instantiate tm_population'. 
33:    until tm_population' size is smaller than M: 
34:       Select a team from tm_population. 
35:       if apply crossover: 
36:          Select another team from tm_population. 
37:          Apply crossover to generate two teams offspring. 

38:       if apply mutation: 
39:          Apply mutation to generate two teams offspring. 

40:       Add offspring 1 to tm_population'. 
41:       if exists offspring 2: 
42:          if tm_population' size is smaller than N: 
43:             Add offspring 2 to tm_population'. 
44:    if apply teams elitism: 
45:       Apply elitism to tm_population' 
46:    Replace tm_population with tm_population'. 
47: return the best-so-far team. 



4.  Results and discussion 

Three multiclass datasets from the UCI Machine Learning Repository (archive.ics.uci.edu)                   
were analysed, namely the Iris (IRS), the Thyroid (THY) and the Yeast (YST) datasets. The                             
IRS was used to explore the proposed algorithm and its parameters. The others were used to                               
assess the algorithm results in comparison to other classification algorithms from literature. 

4.1. Experimental design 

4.1.1. Dataset partition 

All experiments were run 30 times, each with different data partitioning and algorithm seed.                           
Thus, the variability observed in the results comes from the randomness in the data and in                               
the algorithm. As shown in Figure 9, the data was first split into 5 k-folds crossvalidation                               
(80% for train, 10% for test and 10% validation partitions). Then, the instances were shuffled                             
and the k-fold crossvalidation partitioning was repeated 6 times.  

 
 Figure 9: Data partition for the 30 runs used in experiments. 

4.1.2. Run settings 

In all experiments the trees were initialised with the RHH method with a tree maximum                             
depth of 3. Specialists elitism and teams elitism were always used. The node set of the tree's                                 
structure was composed by , , and protected . The terminal set was composed by        +   −   ×       ÷              

ephemeral constants from interval in addition to the dataset features. The other      0, [ ] 1 ∈ ℜ                    
default settings are presented in Table 1. The modified settings for each experiment are                           
presented in the corresponding section. 

4.1.3. Measurements 

The measurements taken in all experiments are described in Table 2. Only results that are                             
relevant for the discussion are presented in this Chapter, but the complete results are                           
provided in Appendix A as supplementary material. 
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 Table 1: PIC GP base settings used in experiments. 

 Table 2. Experiment measurements. 
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PIC GP Setting  IRS  THY  YST 

Dataset normalisation  No  No  Yes 

Trees maximum depth  6  10  10 

Trees fitness measure  f-score  f-score  f-score 

Specialists population 
size 

90  90  120 

Parent 1 selection  tournament size 3  tournament size 3  tournament size 3 

Parent 2 selection  tournament size 3  tournament size 2  roulette wheel 

Crossover probability  0.8  0.8  0.8 

Mutation probability  0.2  0.2  0.2 

Maximum generations  250  250  300 

Phase change  200  200  240 

Specialists interactions 
initial rate 

1.00  1.00  1.00 

Specialists interactions 
rate decrease 

0.00  0.00  0.00 

Team fitness method  Accuracy  Accuracy  Accuracy 

Teams evolution  No  No  No 

Measurement  Description 

Accuracy mean ( sd)±   Accuracy mean  one standard deviation.±  

Team fitness  The train fitness of the best team in a generation. 

Team fitness validation  The validation fitness of the best team in a generation. 

Best team fitness  The train fitness of the best-so-far team. 

Best team validation fitness   The validation fitness of the best-so-far team. 

Specialists interactions  The number of times that two individuals of different 
specialisations participate in a crossover operation. 

Trees mean size  The mean of the tree sizes of the individuals of a population. 

Phenotype diversity  The variance of the fitnesses of the individuals of a 
population. 

Genotype diversity  The number of different tree structures in a population 
divided by its number of individuals. 

Number of specialists of each 
class 

The number of individuals in each specialised subpopulation. 

Mean fitness for each class  The mean of the training fitness of the individuals in each 
specialised subpopulation. 

Phenotype diversity for each 
class 

The phenotype diversity for each specialised subpopulation.  

Genotype diversity for each 
class 

The genotype diversity for each specialised subpopulation.  



4.1.4. Dataset balance 

To train individuals for each class, converting the all-vs-all method into the one-vs-all                         
method, the dataset was divided in two parts, the positive cases (with the instances that                             
belong to a target class) and the negative cases (with the instances that do not belong to that                                   
target class). 

One problem that can arise from this procedure is that it may produce training data with an                                 
important imbalance between the positive and negative classes. In this scenario, the class with                           
fewer observations is more likely to be misclassified than the class with more observations                           
(Chawla et al., 2002). To balance back the instances, one can either replicate the less frequent                               
class instances, or subsample the more frequent ones. The first option modifies the                         
distribution of the target class data, since with replicated data the dataset variability will                           
decrease. The second may cause the loss of information from the dataset. There is no ideal                               
solution. The PIC GP presented in this thesis uses the second approach and it can be run                                 
with or without balancing. The following options were implemented in the algorithm: 

▸ Full: All data instances are used as in raw data. 

▸ Balanced: The class instances that are more frequent are randomly sampled to have                         
the same number as of less frequent class instances. The sampling is repeated in each                             
GP generation, thus providing different instances from the more frequent class to the                         
algorithm training each time. With this strategy, no class prevails by quantity of                         
instances and the classifier will lose less information over the algorithm evolution.                       
This procedure does not balance originally unbalanced data, it only reverses the                       
unbalancing caused by the split of the data into only two classes. If a class has too                                 
many or too few instances in the dataset, the only thing this procedure will do is to                                 
use as much information as possible to train the model with balanced data. Even if                             
this means training the model for this specific class with less information than the                           
models for other classes. 

Figure 10 shows the balance between positive and negative cases for the three datasets                           
analysed. The IRS dataset is the least unbalanced because it has only three target classes and                               
they are perfectly balanced, with exactly the same number of instances for each class. The                             
THY also has only three classes, but they are already unbalanced in the original data (92.6%                               
of the data for hypothyroidism, 5.1% for hyperthyroidism and 2.3% for no disease). So, when                             
split for a one-vs-all training, it becomes very unbalanced for all target classes (92.6% positive                             
for hypothyroidism vs 7.4% negative; 5.1% positive for hyperthyroidism vs 94.9% negative;                       
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2.3% with no disease vs 97.7% with disease). The YST dataset has seven target classes and also                                 
becomes highly unbalanced for each target class. 

 

 Figure 10: Classes balances for each of the tested datasets. 

Table 3 presents the results for experiments conducted with full (not balanced) and with                           
balanced methods for the three analysed datasets using the default GP settings.  

 Table 3: Accuracy in train and validation partitions for dataset balance experiments. 

The proposed sampling balanced method did not improve the results for any of the analysed                             
datasets (t-test p-values 0.671 for training and 0.805 for validation in IRS; 0.421 for training                             
and 0.621 for validation in THY; 0.326 for training and 0.469 for validation in YST).  

4.2. Iris dataset 

This is a very known dataset that has 4 real number features for flower measures (length and                                 
width of the petals and of the sepals) and 3 target classes, the flower species. As seen in Figure                                     
11, the target class setosa is linearly separable from the other two species based on petal length                                 
and width. For sepal length, the setosa is more different from virginica than from versicolor,                             
while the latter two are similar between them. For sepal width, versicolor and virginica are                             
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    Mean  (sd)±   Best 

    Train  Validation  Train  Validation 

IRS 
full  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 

balanced  0.972  (0.020)±   0.964  (0.049)±   0.992  1.000 

THY 
full  0.967  (0.013)±   0.967  (0.014)±   0.986  0.992 

balanced  0.969  (0.010)±   0.968  (0.013)±   0.986  0.990 

YST 
full  0.536  (0.027)±   0.380  (0.172)±   0.570  0.642 

balanced  0.530  (0.032)±   0.406  (0.130)±   0.567  0.608 



almost matching and setosa is more different but still difficult to separate. Therefore, the                           
easiest class to classify is setosa. 

 

 Figure 11: Iris dataset features distribution for each target class. 

4.2.1. Specialists selection algorithm 

The following selector methods were used in the specialists selection experiments: 

 Table 4: Specialists selection algorithms used in the experiments. 

For all selection methods, the best accuracy for the validation partition was 1.00 (Table 5).                             
The accuracy was also 1.00 for the training partition for T5_R and T5_T5 selection                           
methods. The best accuracy mean for the training partition was 0.977 for R_T5 and for the                               
validation partition it was 0.978 for the T5_T5 method. For the training set, the difference                             
was significant for T5_R vs. all other methods (all pairwise adjusted p-values in a Tukey HSD                               
test smaller than 0.001). This method also had the worst training set accuracy amongst the                             
best runs of all methods. The other methods were not significantly different among them.                           
For the validation set, there was no significant difference among the methods (p-value 0.267                           
for a one-way ANOVA test).  

The selection methods for first and second parents have different effects in PIC GP. The first                               
parent operator just controls the selection pressure inside the subpopulation of one single                         
specialisation class. Apart from the selection pressure, the second parent operator also                       
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Method  First parent  Second parent 

T3_R  Tournament size 3  Roulette wheel 

R_T3  Roulette wheel  Tournament size 3 

T3_T3  Tournament size 3  Tournament size 3 

T5_R  Tournament size 5  Roulette wheel 

R_T5  Roulette wheel  Tournament size 5 

T5_T5  Tournament size 5  Tournament size 5 



controls the interaction among specialists of different classes. This can be seen in Figure 12,                             
which shows the number of interactions between specialists from different classes for the                         
tested selection methods. 

 Table 5: Mean, one standard deviation and the best accuracy for training and validation sets in the                                 
specialists selection method experiments. In bold are the best values of the respective column. 

 
 Figure 12: Specialists interactions mean and one standard deviation through GP evolution for each 

specialists selection method. 

Independently of the selection method used for the first parent, the interaction among                         
specialists of different classes were the same for the same selection method used in the second                               
parent (T3_R is very similar to T5_R; R_T3 to T3_T3; R_T5 to T5_T5). Moreover, the                             
bigger the tournament for the second parent, the more interactions among different                       
specialists happened in each generation, as can be seen in the same plots. The first step of                                 
tournament selection is completely random, i.e. it is not related with the individuals'                         
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  Mean  (sd)±   Best run 

  Train  Validation  Train  Validation 

R_T3  0.973  (0.014)±   0.953  (0.056)±   0.992  1.000 

R_T5  0.977  (0.011)±   0.967  (0.042)±   0.992  1.000 

T3_R  0.974  (0.016)±   0.953  (0.047)±   1.000  1.000 

T3_T3  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 

T5_R  0.944  (0.049)±   0.951  (0.068)±   0.983  1.000 

T5_T5  0.974  (0.018)±   0.978  (0.036)±   1.000  1.000 



fitnesses. However, the number of individuals in each class subpopulation affects the                       
selection pressure, favouring individuals of the more abundant subpopulation. In addition to                       
the fact that the first parent is chosen to balance the number of individuals among the                               
specialisation classes, favouring the more abundant class in the second parent selection                       
increased the interactions among classes. Since the setosa species is the easiest to discriminate,                           
its specialists tend to have higher fitness and, hence, to be more prevalent in the algorithm                               
population. This can be seen in Figures 13 and 14, which show the number of individuals                               
and the mean fitness in each class subpopulation for each generation of the experiments                           
T3_T3 and T5_T5. These plots show that in the demes phase of the algorithm the number                               
of specialists in subpopulations of the classes versicolor and virginica tended to decrease while                           
the number of setosa specialists tended to increase. These plots also show that the fitness of                               
setosa specialists tended to be higher than the fitness of versicolor and virginica specialists,                           
giving to setosa individuals an even higher competitive advantage. 

In addition to this selection advantage, the higher number of setosa individuals is also related                             
to the higher proportion of offspring generated with this specialisation class. As the setosa is                             
the easiest class to classify, the individuals' fitness for this class will tend to be higher and,                                 
hence, in PIC GP most of the new individuals will be set to be specialised in this class. 

 
 Figure 13: Number of specialised individuals in each class subpopulation through GP evolution for 

each specialists selection method. 
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 Figure 14: Mean of fitness of training partition in each class subpopulation through GP evolution for 

each specialists selection method. 
The selection methods with the tested settings were not important for team fitness, tree sizes,                             
genotype and phenotype population diversities and genotype and phenotype subpopulation                   
diversities. Detailed results are presented in Appendix A. 

4.2.2. Specialists fitness measures 

The specialist fitness methods used in the experiments are listed in Table 6. 

 Table 6: Specialists fitness measures used in experiments. 

There was no significant difference among specialists fitness measures for final GP accuracy                         
(p-value 0.323 for training set and 0.549 for validation set in a one-way ANOVA test), as can                                 
be seen in Table 7. The best mean in the training set was found using the ROC fitness                                   
measure and in the validation test it was found using the f-score. Again, all the best validation                                 
set accuracies were 1.00. 
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Method  Description 

Accuracy  The accuracy of the individual classification for its own class. Eq. (2). 

Fuzzy accuracy  The accuracy for its own class with correct answers weighted by its 
logistic values. Eq. (3). 

ROC  The convex hull of the ROC curve for the threshold 0.5 for the individual 
classification for its own class. Eq. (4). 

f-score  The f-score of the individual classification for its own class. Eq. (7). 



 Table 7: Mean, one standard deviation and the best accuracy for training and validation sets in the                                 
specialists fitness measures experiments. In bold are the best values of the respective column. 

The ROC and the f-score fitnesses do not consider only the overall correct classification                           
without differentiating if the correct predictions are in positive/negative or most/less                     
frequent classes. This can be important when the dataset is unbalanced and, for a more                             
complex dataset, the different fitness measures may affect the final algorithm classification                       
accuracy. Consider an extreme (but not unusual) condition in which a classifier predicts all                           
instances for the same class. If the correspondent class is prevalent, the accuracy will be high.                               
The ROC fitness is the arithmetic mean between the true positive and the true negative rates                               
and it will balance these results. The f-score is the harmonic mean between precision and                             
recall, which respectively assess the correctness of the positive predictions and the ability of                           
the classifier to find the positive instances of the data. This offset will also balance the results.  

 

 
Figure 15: Mean and one standard deviation of train and validation best team fitness through the GP 

evolution for each specialists fitness method. 
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  Mean  (sd)±   Best run 

  Train  Validation  Train  Validation 

Accuracy  0.969  (0.020)±   0.962  (0.053)±   0.992  1.000 

Fuzzy accuracy  0.974  (0.014)±   0.956  (0.051)±   0.992  1.000 

ROC  0.977  (0.009)±   0.949  (0.057)±   0.992  1.000 

f -score  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 



Figure 15 shows the algorithm fitness evolution for the four experiments. The differences in                           

the beginning of the evolution process are small and indicate that for this dataset and GP                               
settings, the specialists fitness measure was not important to control the algorithm speedness                         
of convergence. 

 
 Figure 16: Genotype and phenotype diversities mean and one standard deviation for each class 

subpopulation through GP evolution for each specialists fitness method. 

Figure 16 shows the phenotype and the genotype diversities for each specialisation class. The                           
maximum of the phenotype diversity is reached in the beginning of the evolution for setosa                             
and this is more prominent for fuzzy accuracy and f-scores measures. Due to the very                             
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numerical nature of the specialists' fitness measures, these two can vary more precisely and,                           
hence, their use will allow the creation of populations with individuals with more phenotype                           
diversity. Table 8 presents numerically this result, by showing the maximum value of the                           
specialised classes phenotype diversity and the corresponding generation in which this was                       
achieved. The pattern is similar for the entire population, but since the subpopulations                         
showed differences in phenotype diversity, class-specific results are presented. 

For each class subpopulation, the higher values of phenotype diversity were achieved using                         
either the fuzzy accuracy or the f-score fitness measures. In a scenario in which the algorithm                               
is converging prematurely, it can be helpful to have a fitness measure that allows better                             
discrimination of the individuals. For all the fitness measures, the setosa class subpopulation                         
had higher diversity than the other two.  

 Table 8: Maximum phenotype diversity achieved for each class subpopulation and the                       
generation in which it was achieved. In bold are the highest values for each class subpopulation. 

The specialists fitness measures with the tested settings were not important for team fitness,                           
tree sizes and specialists interactions. Detailed results are presented in Appendix A. 

4.2.3. Phase change 

The phase change experiments tested different generations in which the algorithm design                       
changed from demes to islands, as presented in Table 9. 

For the cooperation intensity rate used in the experiments (equals 1.0 during the entire                           
evolution of the algorithm) and the other algorithm settings, there was no difference among                           
the four methods tested. Table 10 presents the mean and best final PIC GP accuracy for each                                 
of the four experiments. The differences were not significant (p-values 0.819 for training set                           
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Method  Species  Maximum value  Generation 

Accuracy 

setosa  0.081  8 

versicolor  0.040  71 

virginica  0.050  18 

Fuzzy accuracy 

setosa  0.140  14 

versicolor  0.087  76 

virginica  0.097  30 

ROC 

setosa  0.084  13 

versicolor  0.045  51 

virginica  0.043  83 

f-score 

setosa  0.134  11 

versicolor  0.099  48 

virginica  0.097  90 



and 0.346 for validation set with a one-way ANOVA test). Again, all the best validation set                               
accuracies were 1.00. 

 Table 9: Phase change generations used in the experiments. 

 Table 10: Mean, one standard deviation and the best accuracy for training and validation sets in the phase                                   
change experiments. In bold are the best values of the respective column. 

The phase change with the tested settings also were not important for team fitness, specialists                             
interactions, tree sizes, genotype and phenotype population diversities and genotype and                     
phenotype subpopulations diversities. Detailed results are presented in Appendix A. 

4.2.4. Cooperation intensity rate 

4.2.4.1. Initial rate (CIR0) 

The following values of CIR were tested: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. For all experiments,                                 
the rate was kept constant for the entire PIC GP evolution. 

For all CIR tested values, the best runs achieved accuracy of 1.000 for the validation set                               
(Table 11). For CIR 0.6 and CIR 0.8, the best accuracy in the training set was also 1.000.                                   
The highest mean accuracy in the training and validation sets were obtained for CIR 0.8 and                               
CIR 0.6, respectively. Nevertheless, the differences among CIRs were not statistically                     
significant (the one-way ANOVA test for the differences among the training fitness had the                           
p-value 0.377 and for the differences among the validation fitness it was 0.843). 
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Method  Description 

Full islands  The algorithm worked with island subpopulations  (no interactions) 
during the entire evolution. 

Gen 125  The algorithm worked with demes subpopulations  (with interactions) 
until generation 125 (50% of total generations). 

Gen 200  The algorithm worked with demes subpopulations until generation 200 
(80% of total generations). 

Full demes  The algorithm worked with demes subpopulations during the entire 
evolution. 

  Mean  (sd)±   Best run 

  Train  Validation  Train  Validation 

Full islands  0.972  (0.018)±   0.962  (0.049)±   0.992  1.000 

Gen 125  0.971  (0.012)±   0.980  (0.036)±   0.983  1.000 

Gen 200  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 

Full demes  0.970  (0.019)±   0.960  (0.057)±   0.992  1.000 



 Table 11: Mean, one standard deviation and the best accuracy for training and validation sets in the CIR                                   
experiments. In bold are the best values of the respective column. 

The number of specialists' interactions presented different behavior for different CIR values,                       
as seen in Figure 17. The specialists' interactions decreased slightly over the algorithm                         
evolution in experiments with CIR from 0.0 to 0.4. For CIR 0.6 and CIR 0.8, they reached a                                   
maximum in the early generations, decreasing afterwards. For CIR 1.0, in contrast, they                         
increased over the evolution process. 

 
 Figure 17: Specialists interactions mean and one standard deviation through GP evolution for each CIR 

values experiment. 

In general, the specialists' interactions increased with the increase of CIR. However, this                         
correlation was not linear because it also depends on the number of individuals in each class                               
specialisation, as explained in the section describing the specialists' selection experiments. The                       
bigger the difference in the number of individuals among the specialised subpopulations, the                         
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  Mean  (sd)±   Best run 

CIR0  Train  Validation  Train  Validation 

0.0  0.975  (0.011)±   0.958  (0.057)±   0.992  1.000 

0.2  0.976  (0.012)±   0.969  (0.060)±   0.992  1.000 

0.4  0.971  (0.019)±   0.969  (0.038)±   0.992  1.000 

0.6  0.977  (0.010)±   0.973  (0.041)±   1.000  1.000 

0.8  0.978  (0.011)±   0.971  0.034±   1.000  1.000 

1.0  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 



more the individuals of different specialisations will interact when using the tournament                       
selection for the second parent. Figure 18 shows that the pattern of the number of specialists                               
in each class was different for different CIR values. For CIR values from 0.0 to 0.4, the                                 
number of individuals in each specialisation subpopulation was stable and balanced. For CIR                         
0.6 to 0.8, the setosa specialists started to prevail at the expense of the decrease of the versicolor                                   
and virginica number of specialists. But this pattern tended to smooth with the algorithm                           
evolution, more intensely for CIR 0.6 and less for CIR 0.8. For CIR 1.0 the prevalence of                                 
setosa individuals lasted for the entire demes phase of the algorithm.  

Also as a consequence of the differences in the number of individuals among specialisation                           
classes, the genotype and the phenotype diversities in the subpopulations were affected, as                         
can be seen in Figure 19. 

With CIR 0.0, the phenotype diversity of all class subpopulations decreased after changing                         
from demes to island phase of the algorithm. This also happened with CIR 0.2 and CIR 0.4                                 
for the setosa class. This decrease in phenotype diversity shows that the diversity in the demes                               
phase was maintained through interactions of individuals from different specialisations.                   
However, with lower interaction rate, this diversity was not enough to produce good search                           
space exploration. It was kept "artificially" by the interaction among different specialists and                         
as soon as the subpopulations were separated in islands, the phenotype diversity decreased.                         
With CIR 0.0 to CIR 0.8, the genotype diversity of versicolor and virginica classes (the                             
weaker classifiers) also had a pronounced decrease after the algorithm phase change. For the                           
setosa (the strongest classifiers) this happened only for CIR 0.6. For CIR of 1.0, the genotype                               
diversity presented the opposite behavior for the setosa subpopulation: it increased after the                         
phase change. Hence, for the classifiers of this class, the island approach was better in terms                               
of genotype diversity. For the weaker classifiers the genotype diversity using CIR 1.0 was kept                             
after the phase change.  
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 Figure 18: Number of specialised individuals in each class subpopulation through GP evolution for 

each CIR values experiment. 
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 Figure 19: Genotype and phenotype diversities mean and one standard deviation for each class 

subpopulation through GP evolution for each CIR values experiment. 
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 Figure 20: Mean of fitness of training partition in each class subpopulation through GP evolution for                               
each CIR values experiment. 
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The CIR value was also important for the mean fitness of class subpopulations over the                             
evolution process. With higher CIR values, i.e. with more interactions between specialists of                         
different classes, the mean fitness of the class subpopulations increased earlier for all classes.                           
Before the phase change, setosa and versicolor classes' subpopulations had higher mean fitness                         
for CIR 1.0 and the virginica class for CIR 0.8. Comparing only the values before the phase                                 
change, the weakest class subpopulation (versicolor, the hardest to separate) presented the                       
greatest difference (0.128) between the mean fitness with CIR 0.0 and with CIR 1.0. For the                               
virginica class subpopulation this difference was 0.055 and for the setosa it was 0.048. After                             
the phase change, setosa had the higher mean fitness with CIR 0.0 (0.913), versicolor with                             
CIR 1.0 (0.811) and virginica with CIR 0.0 and CIR 0.6 (0.818). This can be seen in Table                                   
12 and in Figure 20.  

 Table 12: Mean of differences between the mean fitnesses of the class subpopulations 50 generations                             
before and 50 generations after the phase change. In bold are the best values for each class before and                                     
after the phase change. 

Table 12 also shows that the smaller the CIR value, the bigger the increase of the                               
subpopulations' mean fitness after the phase change. This is due to both smaller mean fitness                             
values before the phase change and higher values after the phase change. Although with CIR                             
0.0 the mean fitness of the specialised subpopulations increased more with the phase change                           
(as described above), for the weakest classifier subpopulation (versicolor) the highest mean                       
fitness was reached with CIR 1.0 after phase change. This was not observed for the strongest                               
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CIR  Class  Before  After  Difference 

0.0 

setosa  0.845  0.913  0.086 

versicolor  0.671  0.757  0.077 

virginica  0.741  0.818  0.064 

 
0.2 

setosa  0.856  0.910  0.054 

versicolor  0.743  0.791  0.049 

virginica  0.780  0.816  0.037 

0.4 

setosa  0.843  0.902  0.059 

versicolor  0.756  0.794  0.038 

virginica  0.763  0.799  0.035 

0.6 

setosa  0.873  0.897  0.024 

versicolor  0.754  0.793  0.039 

virginica  0.780  0.818  0.038 

0.8 

setosa  0.873  0.893  0.020 

versicolor  0.752  0.780  0.028 

virginica  0.802  0.816  0.013 

1.0 

setosa  0.893  0.892  -0.001 

versicolor  0.799  0.811  0.012 

virginica  0.796  0.809  0.014 



classifier subpopulation (setosa), for which the highest mean fitness was reached with CIR                         
0.0 after phase change. Thus, a higher CIR value favoured an improvement of the                           
subpopulation of weaker classifiers for the final algorithm prediction. 

Two interesting conclusions can be drawn from the results presented above. First, that before                           
the phase change, the interaction among the specialists of different classes was helping                         
especially the weaker classifiers. Second, that the islands phase is also important for                         
subpopulations to evolve. Both demes and islands seem to be important for best algorithm                           
evolution. 

The different CIR values with the tested settings were not important for team fitness, tree                             
sizes and genotype and phenotype population diversities. Detailed results are presented in                       
Appendix A. 

4.2.4.2. Rate decrease 

The following values of CIR rate decrease were tested: 0.00, 0.05 and 0.10. For 0.05 and 0.10                                 
values, as the initial rate was 1.00 for all experiments, the CIR becomes smaller than 0.001 in                                 
generations 136 and 67, respectively, i.e. too early in the evolution process. Therefore, the                           
evolution patterns for (i) interactions between specialists, (ii) population and subpopulation                     
diversities, (iii) subpopulation mean fitness and (iv) number of individuals were similar to                         
those presented in the previous section (see Appendix A). 

Table 13 presents the algorithm mean, one standard deviation and best accuracies for each                           
CIR decrease experiment. There was no significant difference among them (p-values of 0.721                         
for training set and 0.522 for validation set). Again, all the best validation set accuracies were                               
1.00. Lower decrease rates would need to be tested to allow for a more detailed discussion. 

 Table 13: Mean, one standard deviation and the best accuracy for training and validation sets in the                                 
CIR decrease rate experiments. In bold are the best values of the respective column. 

4.2.5. Team prediction 

The team prediction methods used in the team predictions are presented in Table 14. 
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  Mean  (sd)±   Best run 

CIR decrease  Train  Validation  Train  Validation 

0.00  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 

0.05  0.971  (0.020)±   0.973  (0.038)±   1.000  1.000 

0.10  0.974  (0.012)±   0.960  (0.054)±   0.983  1.000 



 Table 14: Team prediction methods used in experiments. 

Table 15 shows the final fitness results obtained for the Softmax and Specialist weighted                           
methods. There was no significant difference between these two methods (p-value 0.230 for a                           
t-test for the training set means and 0.682 for the validation set means). This could be due to                                   
the small differences among the teammembers' fitness and, therefore, the small differences in                           
the weights used to adjust the logistic outcomes of the specialists. In the weighted accuracy                             
experiments, the mean of the final fitness in setosa specialists was 0.893, in versicolor                           
specialists it was 0.791 and in virginica specialists it was 0.818. Again, all the best validation                               
set accuracies were 1.00. 

 Table 15: Mean, one standard deviation and the best accuracy for training and validation sets in                               
the team prediction experiments. In bold are the best values of the respective column. 

The different team prediction methods with the tested settings were not important for all                           
other algorithm measurements. Detailed results are presented in Appendix A. 

4.2.6. Team evolution 

For the experiments on team evolution the following settings were used (Table 16): 

 Table 16: PIC GP settings used in teams' experiments. 

47 

Method  Description 

Softmax  The softmax (Eq. 9) of the team members logistic values.  

Specialist 
weighted 

The softmax of the team members logistic values weighted by the 
members' fitnesses (Eq. 10).  

  Mean  (sd)±   Best run 

  Train  Validation  Train  Validation 

Softmax  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 

Specialist weighted  0.969  (0.018)±   0.962  (0.042)±   0.992  1.000 

PIC GP Setting  Value 

Team fitness measure  Accuracy 

Teams population size  5 

Selection method  Tournament size 3 

Crossover probability  0.5 

Mutation probability  0.5 

Mutation operator  Specialist 

Team elitism  True 

Team fitness method  Accuracy 



4.2.6.1. Teams mutation operator 

The following team mutation operator methods were used in the experiments (Table 17): 

 Table 17: Team mutation operator methods used in the experiments. 

The results for the teams mutation operator experiments show that the specialist method was                           
slightly better than the others for the generalisation ability of the algorithm (Figure 21). The                             
mean of the validation fitness of the specialist method was greater than the mean of the                               
training fitness through almost the entire evolution process. 

 
 Figure 21: Mean and one standard deviation of train and validation best team fitness through the GP 

evolution for each team mutation operator. 

Table 18 presents the final accuracy of PIC GP using the three teams mutation operator                             
methods that were tested. Again, all the best validation set accuracies were 1.00. For the                             
training set, the final mean accuracy of the algorithm was not significantly different among                           
methods (p-value 0.673 with a one-way ANOVA). For the validation set, on the other hand,                             
the difference was significant (p-value 0.011 in the one-way ANOVA) and a posterior                         
Tukey's HSD test indicated that this difference was between the specialist and the weaker                           
mutation operators (adjusted p-value 0.009 for this pair). Thus, the randommutation wasn't                         
too innovative for this dataset. In fact, the results of these experiments showed that the group                               
performance isn't compromised even by including a non-evolved individual in the team as                         
occurs when using the random method. Moreover, the weaker mutation didn't improve the                         
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Method  Description 

Random  A random specialist of the team is replaced by a new random tree. 

Specialist  A random specialist of the team is replaced by a specialist of the same 
specialisation from the specialists population. 

Weaker  A specialist of the team is probabilistically chosen according to the 
inverse of its fitness to be replaced by a specialist of the same 
specialisation from the specialists population. 



team performance. These results demonstrate the strength of working in teams. For more                         
complex classification problems though, it is expected that the randommethod will decrease                         
the team performance because it becomes more crucial to work with stronger members. 

 

 Table 18: Mean, one standard deviation and the best accuracy for training and validation sets in the                                 
team mutation experiments. In bold are the best values of the respective column. 

4.2.7. Final remarks 

The classification accuracy was high both in the training and in the validation partitions for                             
all experiments, indicating that, for this dataset, the algorithm performed well independently                       
of the settings used. The best accuracy mean for the specialist experiments was achieved in                             
phase change tests for a change halfway in the evolution process, at generation 125 (mean                             
accuracy 0.971 for the training set and 0.980 for the validation set). The best of all means was                                   
achieved in the teams mutation operator experiments (mean accuracy 0.977 for the training                         
set and 0.998 for the validation set obtained using the specialist method). 

A comparison of the mean fitness obtained with the default experiment settings without                         
teams evolution and with teams evolution using the specialist team mutation operator was                         
made to assess the importance of teams evolution in PIC GP for the IRS dataset. The fitness                                 
means using teams evolution were 0.003 and 0.031 greater than without teams evolution for                           
the training and validation sets, respectively. T-tests resulted in p-values 0.475 and <0.001,                         
respectively. A statistically significant increase in accuracy in the validation set of 3% is                           
considered relevant. It shows that the teams evolution improved the algorithm generalisation                       
ability. 

All experiments have shown a good generalisation ability in the model, as the validation set                             
accuracy was always similar to the training set accuracy and the best validation set accuracy                             
was always 1.00. This is a widely explored dataset and some published results indicate that it                               
is easy to classify. Louis Ong in the Kaggle website published a study with a multilayer NN                                 1

in which the classification accuracy in the test set was also 1.00. In any case, there are also                                   

1 https://www.kaggle.com/louisong97/neural-network-approach-to-iris-dataset 
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  Mean  (sd)±   Best run 

  Train  Validation  Train  Validation 

Random  0.976  (0.012)±   0.969  (0.060)±   0.992  1.000 

Specialist  0.977  (0.011)±   0.998  (0.012)±   0.992  1.000 

Weaker  0.974  (0.015)±   0.967  (0.042)±   0.992  1.000 

https://www.kaggle.com/louisong97/neural-network-approach-to-iris-dataset


studies in the literature in which the classifiers did not show such good performances. For                             
example, Mendes et al. (2001) published a study on a co-evolutionary system for discovering                           
fuzzy classification rules and their model had achieved the mean accuracy of 0.953 ( 0.071)                           ±  
for the test set. 

Tests with other combinations of the settings, like using the roulette wheel for the second                             
parent specialists' selection or other cooperation intensity rates for the phase change                       
experiments may impact more strongly on algorithm performance than observed in the                       
experiments presented above. Moreover, tests with a dataset less linearly separable will                       
probably reveal more differences amongst the settings tested in this work. However, the                         
experiments presented above gave extremely valuable hints on how the selection method, the                         
CIR and the demes to islands phase change can affect differently the subpopulations of the                             
classifiers depending on their strength. These relationships have shown that the specialists'                       
interactions can benefit the weaker classifiers and that the islands phase is important for the                             
improvement of all classifiers. 

4.3. Thyroid dataset 

The thyroid (THY) dataset contains registers of patients for three thyroid disease states,                         
namely, no disease, hypothyroidism and hyperthyroidism. It has 21 features, of which 15 are                           
binary and 6 are real numbers, for 7200 observations. The disease state is the prediction class.                               
Figures 22 and 23 present the distribution of these features for each target class. None of the                                 
features is able to linearly separate any of the classes and, hence, class discrimination is not                               
easy for this dataset (overlapping distributions for continuous features and similar yes/no                       
proportions for binary features). 

As reported in Table 3, the best PIC GP run for the THY dataset, using the algorithm's                                 

default settings (Table 1), achieved an accuracy of 0.992 for the validation set.  

 
 Figure 22: Thyroid dataset real number features distribution for each target class. 
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 Figure 23: Thyroid dataset binary features distribution for each target class. 

The algorithm performed quite well, since it outperformed some results found in literature                         
without any fine tuning. For example, Tsakonas (2006) tested four grammar-guided GP                       
configurations: with decision trees, with fuzzy rule-based training, with fuzzy petri-nets and                       
with neural networks. The best training accuracies were respectively 0.988, 0.947, 0.942 and                         
0.940 for the training set and 0.976, 0.941, 0.940 and 0.940 for the validation set. Ionita &                                 
Ionita (2016) also compared methods of machine learning for this dataset. They found that                           
the best runs for NB, Decision Trees, Multilayer Perceptron and Radial Basis Function                         
Network achieved classification accuracies of 0.917, 0.969, 0.951 and 0.960, respectively.                     
They also made a second experiment, manually removing Query_on_thyroxine,                 
Query_on_hypothyroid, Query_on_hyperthyroid features and were able to improve the                 
accuracy of the Decision Trees classifier to 0.973, but obtained worst results for the other                             
classifiers. Finally, Zhang et al. (2017) published a comparison among the following machine                         
learning algorithms for MCC: Stochastic Gradient Boosting Decision Trees (GBDT),                   
Random Forests (RF), Extreme learning machine (ELM), Support Vector Machine (SVM),                     
C4.5, Sparse Representation based Classification (SCR), KNN, Logistic Regression (LR),                   
AdaBoost (AB), NB and Deep Learning (DL). The best accuracy that they could obtain for                             
each classifier for the THY dataset is presented in Table 19. Of note, PIC GP outperformed                               
9 of the 11 algorithms tested by the authors and was worse than GDBT and RF. 
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 Table 19: Accuracy for PIC GP and the achieved accuracy for each classifier reported in Zhang et al. (2017) for                                       
the THY dataset. (+) indicates the algorithms that performed better than PIC GP, (-) those that performed                                 
worse and (=) the one that performed equal to PIC GP. 

4.4. Yeast dataset 

The Yeast (YST) dataset contains data frommolecular analysis of yeast. The dataset has 8 real                               
number features of biochemical analysis for 1484 observations. The target classes are 10                         
possible cellular localisation sites of proteins in the organism. 

In Figure 24 it is possible to see that the features distributions are mostly overlapped. In                               
features mcg, gvh, alm, mit, erl and pox it is possible to see two groups of overlapped features                                   
distributions. Thus, it is expected that his dataset is even more difficult to classify than IRS                               
and THY. 

 
 Figure 24: Yeast dataset features distribution for each target class. 

As reported in Table 3, the best PIC GP run for the YST dataset, using the algorithm's                                 
default settings (Table 1), achieved an accuracy of 0.642 for the validation set.  
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Algorithm  Validation fitness  Algorithm  Validation fitness 

PIC GP              0.992  SCR  0.903   (−)  

GDBT  1.000   (+)   KNN  0.903   (−)  

RF  1.000   (+)   LR  0.931   (−)  

ELM  0.903   (−)   AB  0.931   (−)  

SVM  0.903   (−)   NB  0.903   (−)  

C4.5  0.986   (−)   DL  0.903   (−)  



The PIC GP performance for this dataset is comparable with some results found in literature                             
without any fine tuning, again confirming the robustness of the algorithm. For a MCC GP                             
wrapper algorithm, Muñoz et al. (2015) found a median of 0.562 (best run < 0.62) for                               
classification accuracy for this dataset. The results for the 11 datasets studied by Zhang et al.                               
(2017), described in the previous section, are presented in Table 20. The PIC GP                           
outperformed 10 and it was worse than 1, but the difference to the best algorithm (ELM)                               
was only 0.007 while to the worst (DL) was 0.311. 

 Table 20: Accuracy for PIC GP and the achieved accuracy for each classifier reported in Zhang et al. (2017) for                                       
the YST dataset. (+) indicates the algorithms that performed better than PIC GP, (-) those that performed                                 
worse and (=) the one that performed equal to PIC GP. 
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Algorithm  Validation fitness  Algorithm  Validation fitness 

PIC GP              0.642  SCR  0.574   (−)  

GDBT  0.622   (−)   KNN  0.574   (−)  

RF  0.622   (−)   LR  0.621   (−)  

ELM  0.649   (+)   AB  0.412   (−)  

SVM  0.629   (−)   NB  0.595   (−)  

C4.5  0.513   (−)   DL  0.331   (−)  



5. Conclusions 

The GP for multiclass classification (MCC) problems presented in this thesis combines the                         
advantages of evolving both strong individuals and teams composed of these individuals. The                         
algorithm is named Progressively Insular Cooperative (PIC) GP because its key feature is the                           
possibility to decrease progressively the level of interaction between individuals specialised in                       
classifying different classes followed by a complete separation of the specialised                     
subpopulations, allowing them to evolve with no interaction with other subpopulations, i.e.                       
as islands. Moreover, teams of individuals specialised in different classes also can evolve in an                             
independent process from the evolution of the specialist individuals explained above. This                       
allows teams to work with already improved individuals to find the best possible                         
combination. 

The modifications made in the standard GP for the evolution of specialist individuals were                           
the introduction of new parameters, changes in the selection step and modifications in the                           
individuals' fitness measures. The new parameters that were introduced are the cooperation                       
intensity rate (CIR), the rate of CIR decrease over the algorithm evolution and the                           
generation in which the algorithm starts working with totally separated specialised                     
subpopulations (islands). The selection step was modified to control the interaction between                       
specialists of different classes, using the introduced parameters. Different specialists' fitness                     
measures were tested to improve the assessment of the individuals to better decide if they                             
should or not participate from the teams. The modifications made in the team evolution                           
were in the team prediction step and the team mutation operators. 

The proposed PIC GP algorithm showed excellent performance for the three datasets tested                         
(Iris, Thyroid and Yeast from the UCI Machine Learning repository). Still there is scope for                             
further research with a more exhaustive exploration of its parameters. For example, with                         
more complex datasets and with other combinations of the settings, as indicated in the                           
experiments final remarks. 

Importantly, the current work elucidated a major question that currently has no clear answer                           
in the available literature. As seen in the CIR experiments, team-based GP can benefit both                             
from the interaction between individuals specialised in different classes and from a more                         
restricted approach with interaction only between individuals of the same specialisation class.                       
The contribution of each approach to the algorithm's performance will depend on the                         
performance of each group of specialised individuals. A demes approach helps weaker groups                         
of specialist classifiers because they may benefit from receiving crucial genetic material from                         
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stronger groups. An island approach, on the other hand, will allow strong classifiers to evolve                             
to their best potential. The results indicate that the combination of both approaches may be                             
the best strategy, at least for some datasets. Starting with a demes approach is important to                               
improve the weaker performers. Later, when all groups are strong, the algorithm can change                           
to an islands approach to allow all the specialised classifiers to reach their best. The demes                               
approach slows down the evolution process of stronger specialised groups, as expected for                         
any kind of team work. However, it can benefit GP algorithms in MCC tasks. Indeed, the                               
results presented here indicate that cooperation can benefit collective evolution. On the other                         
hand, when all classifiers perform well from the beginning, it is expected that a demes                             
approach would not be beneficial. 

The recommended progression of the current work is to use this new information to                           
transform the PIC in the Adaptative Insular Cooperative GP. In its adaptative form, instead                           
of having the CIR, the CIR decrease and the phase change parameters fixed, they would                             
change according to the class subpopulations performance. It would adjust the CIR trying to                           
help the weaker classifiers and to change from demes to islands phase when the specialised                             
subpopulations had reached a good performance. 

In addition, a more extensive exploration of the teams' evolution is recommended. More                         
specifically, using the team's evolution with Genetic Algorithms instead of GP. As the                         
specialised trees do not evolve in this level of PIC GP, the teams will always have the same size                                     
and, therefore, they can be a Genetic Algorithm solution. 
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Appendix A 

 



1. Experiments results 
1.1. Iris Dataset 

1.1.1. Specialists selection operator 
 

 
Figure 1: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

each selection method. 

 

 
Figure 2: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for each selection method. 
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Figure 3: Train and validation best team final fitnesses for each selection method. 

 

 

Figure 4: Specialists interactions mean and one standard deviation through GP evolution for each specialists 
selection method. 
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Figure 5: Trees sizes mean and one standard deviation through GP evolution for each specialists selection 
method. 

 

 

Figure 6:  Genotype and phenotype diversities mean and one standard deviation through GP evolution for each 
selection method. 
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Figure 7: Number of specialised individuals in each class subpopulation through GP evolution for each 

specialists selection method. 
 

 

 
Figure 8: Mean of fitness of training partition in each class subpopulation through GP evolution for each 

specialists selection method. 
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Figure 9: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 
through GP evolution for each selection method. 

 

1.1.2. Specialists fitness measure 

 
Figure 10: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

each specialists fitness method. 
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Figure 11: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for each specialists fitness method. 

 

 
Figure 12: Train and validation best team final fitnesses for each specialists fitness method. 
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Figure 13: Specialists interactions mean and one standard deviation through GP evolution for each specialists 

fitness method. method. 

 

 

Figure 14: Trees sizes mean and one standard deviation through GP evolution for each specialists fitness 
method. 
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Figure 15: Trees sizes mean and one standard deviation through GP evolution for each specialists fitness 
method. method. 
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Figure 16: Number of specialised individuals in each class subpopulation through GP evolution for each 
specialists fitness method. 
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Figure 17: Mean of fitness of training partition in each class subpopulation through GP evolution for each 
specialists fitness method. 
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Figure 18: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 
through GP evolution for each specialists fitness method. 
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1.1.3. Phase change 

 
Figure 19: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

islands-demes phase changing in different generations. 

 

 
Figure 20: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for islands-demes phase changing in different generations. 
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Figure 21: Train and validation best team final fitnesses for islands-demes phase changing in different 

generations. 

 

 
Figure 22: Specialists interactions mean and one standard deviation through GP evolution for islands-demes 

phase changing in different generations. 
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Figure 23: Trees sizes mean and one standard deviation through GP evolution for islands-demes phase changing 
in different generations. 

 

 

Figure 24: Trees sizes mean and one standard deviation through GP evolution for islands-demes phase changing 
in different generations. 
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Figure 25: Number of specialised individuals in each class subpopulation through GP evolution for 
islands-demes phase changing in different generations. 
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Figure 26: Mean of fitness of training partition in each class subpopulation through GP evolution for 
islands-demes phase changing in different generations. 
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Figure 27: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 
through GP evolution for islands-demes phase changing in different generations. 
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1.1.4. Cooperation intensity rate 
1.1.4.1. Initial rate 

 
Figure 28: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

each CIR values experiment. 

 

 
Figure 29: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for eachCIR values experiment. 
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Figure 30: Train and validation best team final fitnesses for each CIR values experiment. 

 

 
Figure 31: Specialists interactions mean and one standard deviation through GP evolution for CIR values 

experiment. 
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Figure 32: Trees sizes mean and one standard deviation through GP evolution for each CIR values experiment. 

 

 

Figure 33: Trees sizes mean and one standard deviation through GP evolution for each CIR values experiment. 
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Figure 34: Number of specialised individuals in each class subpopulation through GP evolution for each CIR 
values experiment. 
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Figure 35: Mean of fitness of training partition in each class subpopulation through GP evolution for each CIR 
values experiment. 
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Figure 36: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 
through GP evolution for each CIR values experiment. 
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1.1.4.2. Rate decrease 

 
Figure 37: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

different cooperation intensity rate decrease values. 

 
Figure 38: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for different cooperation intensity rate decrease values. 

 
Figure 39: Train and validation best team final fitnesses for different cooperation intensity rate decrease values. 
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Figure 40: Specialists interactions mean and one standard deviation through GP evolution for different 

cooperation intensity rate decrease values. 

 

 

Figure 41: Trees sizes mean and one standard deviation through GP evolution for different cooperation 
intensity rate decrease values. 

 

 

Figure 42: Trees sizes mean and one standard deviation through GP evolution for different cooperation 
intensity rate decrease values. 
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Figure 43: Number of specialised individuals in each class subpopulation through GP evolution for each 
different cooperation intensity rate decrease values. 
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Figure 44: Mean of fitness of training partition in each class subpopulation through GP evolution for different 
cooperation intensity rate decrease values. 
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Figure 45: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 
through GP evolution for different cooperation intensity rate decrease values. 
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1.1.5. Team prediction 

 
Figure 46: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

each team prediction method. 

 
Figure 47: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for each team prediction method. 

 
Figure 48: Train and validation best team final fitnesses for each team prediction method. 
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Figure 49: Specialists interactions mean and one standard deviation through GP evolution for each team 

prediction method. 

 

Figure 50: Trees sizes mean and one standard deviation through GP evolution for each team prediction method. 

 

Figure 51: Trees sizes mean and one standard deviation through GP evolution for each team prediction method. 
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Figure 52: Number of specialised individuals in each class subpopulation through GP evolution for each team 
prediction method. 

 

 

Figure 53: Mean of fitness of training partition in each class subpopulation through GP evolution for each team 
prediction method. 
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Figure 54: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 

through GP evolution for each team prediction method. 
 

1.1.6. Teams mutation operator 

 
Figure 55: Mean and one standard deviation of train and validation team fitness through the GP evolution for 

each team mutation operator. 

 

 
Figure 56: Mean and one standard deviation of train and validation best team fitness through the GP evolution 

for each team mutation operator. 
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Figure 57: Train and validation best team final fitnesses for each team mutation operator. 

 

 
Figure 58: Specialists interactions mean and one standard deviation through GP evolution for each team 

mutation operator. 

 

 

Figure 59: Trees sizes mean and one standard deviation through GP evolution for each team mutation operator. 
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Figure 60: Trees sizes mean and one standard deviation through GP evolution for each team mutation operator. 

 

 

Figure 61: Number of specialised individuals in each class subpopulation through GP evolution for each team 
mutation operator. 
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Figure 62: Mean of fitness of training partition in each class subpopulation through GP evolution foreach team 
mutation operator. 
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Figure 63: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation 
through GP evolution for each team mutation operator. 
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