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Abstract

In contrast to other types of optimisation algorithms, Genetic Programming (GP)
simultaneously optimises a group of solutions for a given problem. This group is named
population, the algorithm iterations are named generations and the optimisation is named
evolution as a reference to the algorithm's inspiration in Darwin's theory on the evolution of

species.

When a GP algorithm uses a one-vs-all class comparison for a multiclass classification (MCC)
task, the classifiers for each target class (specialists) are evolved in a subpopulation and the
final solution of the GP is a team composed of one specialist classifier of each class. In this
scenario, an important question arises: should these subpopulations interact during the

evolution process or should they evolve separately?

The current thesis presents the Progressively Insular Cooperative (PIC) GP, a MCC GP in
which the level of interaction between specialists for different classes changes through the
evolution process. In the first generations, the different specialists can interact more, but as
the algorithm evolves, this level of interaction decreases. At a later point in the evolution
process, controlled through algorithm parameterisation, these interactions can be eliminated.
Thus, in the beginning of the algorithm there is more cooperation among specialists of
different classes, favouring search space exploration. With elimination of cooperation, search

space exploitation is favoured.

In this work, different parameters of the proposed algorithm were tested using the Iris dataset
from the UCI Machine Learning Repository. The results showed that cooperation among
specialists of different classes helps the improvement of classifiers specialised in classes that
are more difficult to discriminate. Moreover, the independent evolution of specialist
subpopulations further benefits the classifiers when they already achieved good performance.
A combination of the two approaches seems to be beneficial when starting with

subpopulations of differently performing classifiers.

The PIC GP also presented great performance for the more complex Thyroid and Yeast
datasets of the same repository, achieving similar accuracy to the best values found in

literature for other MCC models.

Key-words: Multiclass classification (MCC), Genetic Programming (GP), Team GP.



Resumo

Diferente de outros algoritmos de otimiza¢do computacional, o algoritmo de Programagio
Genética (PG) otimiza simultaneamente um grupo de solugdes para um determinado
problema. Este grupo de solugdes é chamado populagio, as iteragdes do algoritmo sio
chamadas de geragoes e a otimizagdo ¢ chamada de evolugio em alusio ‘a inspiragio do

algoritmo na teoria da evolugio das espécies de Darwin.

Quando o algoritmo GP utiliza a abordagem de comparagio de classes um-vs-todos para uma
classificagio multiclasses (CMC), os classificadores especificos para cada classe (especialistas)
sio evoluidos em subpopulagées e a solu¢io final do PG ¢ uma equipe composta por um
especialista de cada classe. Neste cendrio, surge uma importante questio: estas subpopulagoes

devem interagir durante o processo evolutivo ou devem evoluir separadamente?

A presente tese apresenta o algoritmo Cooperagio Progressivamente Insular (CPI) PG, um
PG CMC em que o grau de interagio entre especialistas em diferentes classes varia ao longo
do processo evolutivo. Nas gerag¢des iniciais, os especialistas de diferentes classes interagem
mais. Com a evolug¢io do algoritmo, estas intera¢des diminuem e mais tarde, dependendo da
parametrizagio do algoritmo, elas podem ser eliminadas. Assim, no inicio do processo
evolutivo hd mais cooperagio entre os especialistas de diferentes classes, o que favorece uma
exploragdo mais ampla do espago de busca. Com a eliminagio da cooperagio, favorece-se

uma exploragio mais local e detalhada deste espago.

Foram testados diferentes parimetros do PG CPI utilizando o conjunto de dados iris do UCI
Machine Learning Repository. Os resultados mostraram que a cooperagio entre especialistas
de diferentes classes ajudou na melhoria dos classificadores de classes mais dificeis de modelar.
Além disso, que a evolugdo sem a intera¢do entre as classes de diferentes especialidades
beneficiou os classificadores quando eles jd apresentam boa performance. Uma combinagio
destes dois modos pode ser benéfica quando o algoritmo comega com classificadores que

apresentam qualidades diferentes.

O PG CPI também apresentou étimos resultados para outros dois conjuntos de dados mais
complexos, o thyroid e o yeast, do mesmo repositério, alcangando acurdcia similar aos

melhores valores encontrados na literatura para outros modelos de CMC.

Palavras-chave: Classificagdo multiclasse, Programagio genética, Programagio genética com

equipes.
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1.Introduction

Evolutionary algorithms (EA), including genetic programming (GP), are a class of machine
learning algorithms that optimises a group of solutions instead of working with a single
solution at a time. This group of solutions is called population as reference to its biological
inspiration in Darwin's theory of evolution of the species. Essentially, at each step of the
learning phase of the algorithm, the individuals are modified to generate new individuals and
the best are selected for the next generation. This selection step emulates the natural selection
of Darwin's theory and introduces to EA the ecological relationship of competition. In
supervised learning tasks, individuals compete to give the best algorithm solution for a
regression or a classification problem. The former problem has a continuous outcome and

the latter, a discrete outcome that is the predicted class of an observation.

Besides EA, there is a profusion of supervised algorithms to solve multiclass classification
(MCC) problems, such as K-Nearest Neighbors (KNN), Naive Bayes (NB), Neural
Networks (NN), among others. When dealing with classification of three or more target
classes, a crucial question arises: how to compare the classes among them, all at once or in
pairs? In practical terms, addressing this question means having either a single classifier to
hold the entire classification task or to have as many classifiers as the number of classes to be
modeled. In the latter, the final prediction will be a combination of all classifiers. In GP
context, both approaches can be taken. If classifying all classes at once, a single solution will
have to distinguish all target classes. If classifying in pairs, GP should be changed from its
basic design to generate and evolve more than one solution, since it will need one for each
target class. These one-class classifiers are called specialised individuals. They are grouped in
teams, an up-level solution that combines specialised individuals of each class to give the
algorithm prediction. Consequently, in this approach, the GP evolution works in an

upgraded two-level design, one level for the specialised individuals and another for the teams.

In addition to the competition relationship, which is always present in GP algorithms, the
two-level design of teams-based GP presents an opportunity for the introduction of
cooperation between individuals of different specialisations. Cooperation is a mutually
beneficial interaction between species (Boucher, 2016) that contrasts with intragroup
competition, in which individuals work against each other. Even if not present in GP
standard applications, these mutually beneficial interactions among species are ubiquitous in
nature and have played a pivotal role for the evolution of life on Earth (Preussger et al.,

2020). The cooperation is present in a team-based GP only if specialised individuals are



allowed to interact over the evolution process. The team operation by itself is not a
cooperative, but a collaborative action, since the specialised individuals just work together

but do not benefit from this.

This work presents the development of the Progressively Insular Cooperative (PIC) GP, a
cooperative team-based GP algorithm for MCC in which different classifiers can evolve with
different levels of interaction and specialised individuals compose the team to make the final
algorithm prediction. The main reasoning behind this algorithm is to change the rate of
cooperation among individuals of different specialisations during GP evolution in order to
keep the balance between learning from specialists of other classes and from other specialists
of the same class. Specialists start all in the same GP population but, as the GP evolution
moves forward, the subpopulations of specialists can be progressively separated or completely
detached, then working as islands. Thus, the specialised individuals start learning from
individuals of any specialisation but become restricted to learn only from individuals of the

same specialisation over the GP evolution.

This can help GP because when specialists of different classes interact, they are helping each
other to explore the search space and when they become restricted to interact only with
individuals of the same specialisation, the exploitation of the search space is being favoured.
It is expected that in the beginning of the GP evolution, the search space exploration will be
more beneficial and as the algorithm evolves, the exploitation will become more important.
This is because in the beginning of the algorithm a more intense exploration will allow
solutions to look more widely for good regions of the search space and, then, once these good
regions are found, it is more advantageous to intensify the exploitation, 7.e. a more detailed

look in these good search space regions.

In a standard GP, some parameters of the algorithm can help to control the search space
exploration and exploitation balance, like the initialisation method, the crossover and
mutation rates, etc. In PIC GP, in addition to them, the level of interaction between
individuals of different specialisations is also used to interfere in this balance. The control of
the level of interaction between individuals of different specialisations is done by three
parameters: the cooperation intensity rate (CIR), the rate of CIR decrease and the generation
in which the algorithm should separate specialised subpopulations previously allowed to
interact (demes) into islands. The selection method is changed from the standard algorithm
to work with two parents at a time. The first is chosen to balance the number of individuals
among the specialisation classes. The second is chosen according to the CIR parameter and it

will control the level of interaction between class specialisations. The CIR is a parameter in



the [0,1] € R interval that weights the individuals fitnesses according to their specialisation
to change the probability of selection of the second parent. If the individuals are in the same
specialisation of the first parent, their fitnesses are not changed, otherwise they are weighted
by the CIR. That is, the bigger the CIR, the less the fitness of other specialisation classes will
be decreased and it will allow more interactions among individuals of different specialisation
classes. Thus, PIC GP offers a team-based GP in which it is possible to control the intensity

of cooperation among different class specialised groups over the algorithm evolution.

As in any classification GP, the fitness measure of the specialists is important for
differentiating the individuals, since it is this fitness that guides the specialists' evolution. In
addition to some largely used classification assessment measures like the accuracy, the area
under the receiver operating characteristic curve and the f-score, the present work introduces
a new measure called fuzzy accuracy. To calculate accuracy, individuals' real number
outcomes are discretised into 0 or 1 by a threshold, with 0 being attributed to one class and 1
to the other. Then, each correct prediction is given a value of 1 and the sum of correct
answers is divided by the total number of predictions. In fuzzy accuracy, each correct
prediction is given a value corresponding to the distance between the real number outcome
and the threshold used to discretise the prediction. Thus, instead of summing up 1 for each
correct prediction in the numerator as in accuracy, the distances between the real number
outcomes of correct classifications and the classification cutoff are summed. Therefore, the
farthest from the threshold correct outcomes are, the higher the fitness will be. In PIC GP
this can be important because the team prediction is made based on the real number

outcomes and thus more information can be used for the algorithm prediction.

The evolution of specialists alone is not enough to produce good teams, which are the
entities responsible for the final algorithm classification. It is therefore important to evolve
also the teams and in PIC GP, teams evolve in a completely separate process from the
individuals' evolution. Teams are made by combining probabilistically the best specialists for
each class. These teams then participate in crossover and mutation operations. In the team
crossover operation, parent teams will exchange entire specialist individuals of the same
specialisation class. In the team mutation operation, new genetic material can come from the
specialists population or it can be a new random tree. Moreover, the individual to be replaced
can be chosen randomly or probabilistically, favouring the replacement of the weaker
specialists in the latter. The team prediction is based on the probability of its members to give
a positive prediction. The class with highest probability is the one taken by the team. As an

alternative, a weighted version of the team prediction is also presented. In this case, the real



number outcomes from the team's members are weighted by the respective individuals'

fitnesses, giving higher importance to the outcome of more qualified individuals.

To assess the effects of the PIC GP parameters in the evolution of specialists and teams as
well as in final GP accuracy, the current work presents experiments with different selection
algorithms, different specialists’ fitnesses, different CIR values, different CIR decrease rates,
different generations in which the algorithm changes from demes to islands, different team

prediction methods and different team mutation operators.

The next sections of this thesis are organised as follows: chapter 2 provides a review of GP,
with its main topics and the state of art in MCC GP; chapter 3 presents the proposed
algorithm, including a discussion of its main features; chapter 4 presents results obtained
with the proposed algorithm for multiple datasets; and chapter S closes the work with the

conclusions and recommended future work.



2. Theoretical background

2.1. Genetic programming

Genetic Programming is a very flexible evolutionary Machine Learning (ML) algorithm that
can be used for regression or classification in a wide variety of problems. As any evolutionary
algorithm (EA), GP corresponds to a metaheuristic optimisation that works on the concept
of population, that is a set of candidate solutions that evolves through individuals structure
variations and fitness-based selection. In fact, GP can work even as a hyper-heuristic
optimisation procedure, that instead of operating directly on the problem search space,
operates on the heuristic search space, searching for the heuristics to be used to solve the
target problem (Poli et al., 2008). In analogy to biological systems, the solutions are
individuals, their structures are their genotype and their fitnesses, their phenotype. The
genotype reflects in phenotype, that determines the probability of the individual to survive
and to generate new individuals. Simply put, the phenotype drives the genotype
perpetuation, but not its modification, since the genotype transformations are made blindly.
Moraglio et al. (2012) presented the Geometric Semantic GP (GSGP) in which the operators
that produce modifications in the individuals' structure are not completely blind, but reflect
modifications in the solution output (its semantic) and the search is based in the error space
(the space of the distances between solutions’ semantics and the target). This space is
unimodal, which ensures that the algorithm will not be trapped in local optima, representing
a possible new state-of-the-art machine learning methodology (Vanneschi & Poli, 2012).
Other examples of variations of GP widely used are Linear GP (LGP), that evolves computer
programs written as linear sequences of instructions (Brameier & Banzhaf, 2007) and Strong
Typed GP (STGP), that enforces data type constraints when forming solutions (Montana,
1995).

2.1.1. Tree-based GP

Part of GP flexibility is due to the flexibility of its solutions and the present work refers to
tree-based GP. Trees are hierarchical, variable-size structures that represent computer
programs with nested nodes and terminals. Nodes are elements that combine other elements
(one up to many) and terminals are final branch elements. The combination of nodes and
terminals allows the solutions to have variable (adaptable) size and to be of different kinds,

like computer programs, decision trees, mathematical expressions (called discriminant



functions in GP context) or combined objects. Figure 1 shows an example of a mathematical

CXpI’CSSiOI’l represented as a tree.

While evolving, GP changes randomly the elements of the trees and this results in changing
also their shapes. Therefore, solutions with different shapes interact in GP evolution. Trees
satisfy two necessary conditions to be able to interplay with other trees with different shapes:
sufficiency and closure. Sufficiency states that the terminals and nodes (in combination)
must be capable of representing a solution to the problem. Closure requires that each
function of the node set should be able to handle all values it might receive as input (Espejo et
al., 2010). For example, the arithmetic division is usually applied in a protected form to
handle with zeros in its denominator. Without these properties the random generated trees

could produce a non-valid solution.
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Figure 1: A mathematical expression represented as a tree. Gray objects are nodes and white objects

are terminals.

2.1.2. Initial population

To build the first population, the maximum initial depth and the generation method of its
individuals should be chosen. The depth is defined by the number of levels of nested nodes
and terminals in a tree. The method defines if the tree will be full, having as many elements as
possible for its maximum initial depth, or if it will have any size (the number of elements of a
tree) and depth as long as it does not exceed the initial depth limit. The former method is
called full and the latter, growth. In practice, a very common GP population initialisation is
the ramped half-and-half (RHH) (Koza, 1992) , that creates half of the solutions with the full
method and the other half with the growth method. This initialisation also has its limitations
because it tends to produce a diversity bias, favouring full trees (Burke et al., 2003).
Moreover, the creation of this initial random population is, in effect, a blind random search
of the search space of the problem (Koza, 1994), and many alternatives are proposed in
literature. For example, for GSGP (Vanneschi et al., 2017) proposed an initialisation

algorithm in which the initial population individuals are the best individuals of different



populations (initialised with RHH method) that had already evolved for some generations,

thus increasing the variability of individuals in the first population.
2.1.3. Evolution

The basic GP design performs two steps in each evolution iteration: the selection of its
individuals and their modification to forge the next generation population. Both steps are
always performed in a probabilistic way. Thus, the algorithm evolves creating new solutions
from previous ones and favouring the selection of the better ones to the next generations
until the end of its evolution. The random nature of EA is a key factor differentiating this
family of algorithms from others. In contrast to other ML algorithms, like neural networks
for example, the randomness of EA algorithms is present not only in the algorithm
initialisation, but over all the learning phase. The evolution can take different directions in
each run and thus reach different solutions. Besides that, the best individuals have higher
probability of being kept for the next generation even if bad individuals can also survive.
However, due to the algorithm’s stochastic nature, it can also happen that it loses the best
solution of a generation. That is why it's so common to run GP with elitism, a deterministic

operator that keeps the best individual for the next generation.

Pgen P’ elite P”
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Population replacement to next algorithm generation

Figure 2: GP evolution cycle. Individuals in the population of a given generation (Pgm) are
probabilistically selected according to some evolution criteria to create a temporary population P
Next, the selected individuals are changed with crossover (X) or mutation (A4) to generate new
individuals in P”. The elite individual (circled) is kept unchanged between P’and P”. Later, the
population P, is replaced by P”when it goes to the next generation. Source: the author.

The random modifications of the solutions are made with a conservative and/or with an
innovative variation operator: the crossover and/or mutation, respectively. The former
exchanges the genetic material (the structure) between two solutions while the latter
produces a random change in the genetic material of one single solution. Figure 2 shows a

diagram of the GP evolution. In this example, the only preserved solution is the elite, which is



reproduced deterministically. Other individuals can also be reproduced depending on

algorithm settings. The GP implementation can avoid the use of temporary populations to

reduce its computational cost but the basic idea remains the same. Algorithm 1 shows a GP

basic implementation.

Algorithm 1: Genetic Programming.

1: Set problem, terminal set and nodes set.

2: Set population size N, initialisation method, selection and elitism
methods, crossover and mutation probabilities and termination
condition.

3: Create N individuals for the initial population P.

4: repeat:

5: Set individuals fitnesses.

6: Starts P'

7: repeat:

8: Select parent 1.

9: if making crossover:

10: Select partner 2 and apply the crossover operator.

11: Add offspring to P'.

12: else if making mutation:

13: Apply mutation operator to parent 1

14: Add offspring to P'.

15: else:

16: Add parent 1 to P'.

17: until P' has N offspring individuals.

18: if using elitism: Apply elitism operator to offspring.

19: Replace P with P'.

20:until maximum number of generations is reached or the best solution
is acceptable.
21: return the best-so-far individual.

2.1.4. Selection algorithm

Selection algorithms can control specific characteristics of the evolution process, like the

solutions size, the population diversity, etc. The most commonly used selection algorithms

are:

»

Fitness proportional selection: The probability of one individual to be selected is
directly proportional to its fitness in maximisation problems or to the inverse of
its fitness in minimisation problems. This is also called roulette wheel selection
because it can be seen as a roulette wheel where each individual occupies a space
proportional to the quality of its fitness. A random event chooses a point in the
wheel, selecting the individual whose space contains that point. If the fitness

values are too different, it tends to select only the best individuals, reducing the



chance of weaker individuals to be selected. This can lead the algorithm to a
premature convergence, disabling it to properly explore the search space.

» Ranking selection: Instead of using the fitness value, the individuals are ranked
according to the quality of their fitnesses. The ranking is used to define the
probability of the individuals to be chosen in a fitness proportional selection.

» Tournament selection: A group of # individuals (tournament) is randomly
selected from the population, with or without replacement, and the best is
chosen amongst them. Since the competition is no longer among all individuals
but among a few chosen by chance, this selection reduces significantly the
selection pressure, helping the algorithm to avoid premature convergence.

Evidently, the bigger the tournament, the higher the selection pressure.

Countless other selection algorithms have been proposed. One maybe important to mention
is the lexicographic parsimony pressure (Luke & Panait, 2006) that aims to prevent bloating.
Bloat happens when there is a significant growth of trees during the evolution, leading to an
unproportional increase of the solutions size compared with their fitness improvement
(Vanneschi & Poli, 2012). This is an important drawback of GP because it slows down the
algorithm, making it practically unworkable. The lexicographic parsimony pressure selector

modifies the selection to prefer smaller trees when fitnesses are equal (or equal in rank).

2.1.5. Crossover operator

The basic implementation of the conservative variation operator is called one-point
crossover. It uses two parent individuals coming from two independent selection steps to
generate two new individuals. Each parent is broken in a random point, that is the same for
both parents, and the broken up subtrees (the branches below this point) are exchanged.
Figure 3 shows an example of the crossover operator that produces two offsprings. There are
many variations of this basic crossover operator in literature. For example, the most
commonly used crossover generates only one offspring with the root of the first parent and
the subtree of the second parent, and discards the second offspring (Poli et al., 2008). Other
variations try to improve evolution, especially aiming to control the individuals' growth.
Examples include the size-fair crossover, which chooses the second parent subtree to
guarantee that it is not too big compared to the first parent subtree, and the homologous
crossover, which works like the size-fair but chooses deterministically the most similar

subtree in the second parent (Langdon, 2000).
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Figure 3: Example of a tree based GP one-point crossover with two offsprings. Source: the author.

2.1.6. Mutation operator

The basic GP innovative variation operator is called subtree mutation. It changes the tree in a
random point by introducing a new random subtree. Figure 4 shows an example of the
subtree mutation operator. There are many variations to prevent trees from growing or
changing their structure too much. The importance of preventing uncontrolled tree growth
has been explained above. Preventing large changes in tree structure is also important in order
to prevent loss of knowledge gained during the evolutive process. Some of the mutation
operators proposed in literature are (i) the point mutation that only exchanges a tree element
by another with the same arity, (ii) the hoist mutation, in which the offspring is the parent
subtree defined by a random mutation point (Kinnear, 1993) and (iii) the shrink mutation,
in which a random parent subtree is replaced with a randomly selected terminal (Angeline,

1996).

Parent Random tree Oftspring

/ '4 break point ° (7 .‘

Figure 4: Example of a GP tree mutation. Source: the author.
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2.2. GP for classification problems

For classification problems, the input data x € R should be mapped by a discriminant
function g(x) : %¢ — R, such that each observation can be mapped to a class k, based on
the evidence given by . Since g(x) has its image in real numbers, its output needs to be
converted to a categorical value. For binary classification, Ze. with two target classes, a
threshold can be defined to separate the image values of g()) that correspond to one class
from those that correspond to the other. A common application is to transform the GP
output with the logistic sigmoid function (Eq. 1) and to use the threshold value 0.5. In this
case, the tree solution is made up by the logistic function as the root node and the evolved

tree attached to it.

S() = T (1)

Apart from tuning GP parameters, some authors propose modifications in the basic GP
design to handle binary classifications. Eggermont et al., 1999 presented a study with GP for
binary classifications using stepwise adaptation weights and atomic features representation.
The former increases progressively the weights of observations misclassified by the best
solution to evaluate the fitness in the subsequent generation. The latter transforms all
features into binary values, making tree nodes with more simple functions and increasing the

interpretability of the model.

The classical GP returns just one discriminant function. Therefore, if the objective is
multiclass classification (three or more target classes), the classical GP design won't work and
a modification is required. There are two possible strategies to adapt the classical GP design
to MCC GP, the wrapper or the direct approaches. They are summarised in Figure 5 and
described below.

MCC GP
Wrapper Direct GP

All-vs-all One-vs-others One-vs-all

Independent runs  Subpopulations Independent individuals Teams

Figure 5: Strategies for multiclass classifications with GP. Source: the author.
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2.2.1. Wrapper strategy

The wrapper strategy consists in applying GP to features transformation or features selection
to enhance posterior multiclass classification by other algorithms. For example, Mufioz et al.
(2015) used GP to project the dataset instances into a transformed space where the data of
each class can be grouped into unique clusters. Then, their Mahalanobis distances to the
clusters’ centroids were evaluated and each instance was assigned to the closest cluster. In
Raymer et al. (1996) the GP solutions transformed the data features and these transformed
features were used as input for a KNN classifier. In Tan et al. (2005) a similar approach was
taken, but using a Bayesian classifier. Al-Madi & Ludwig (2013) presented a wrapper MCC

GP method in which a K-Means algorithm was fed with the GP solutions outputs.

2.2.2. Direct GP strategy

The direct GP MCC strategy consists in evolving a GP capable of providing a solution that
gives the classification prediction directly, without any posterior classifier procedure. More
attention is given to Direct GP strategies in this thesis because it was the one applied in the
present work. The concept behind Direct GP is equivalent to the one used in GP for binary
classification, but extended for many target classes. When comparing three or more classes,
the very first decision is how to compare them. Three possibilities exist, which are explained

in more detail below: all-vs-all, all-vs-others or one-vs-all.
2.2.2.1. All-vs-all comparison

This is the most simple extension of the binary classification approach. In this strategy, a
single GP solution is generated and K-7 thresholds are applied to its outcomes for a K classes
problem. A single model must therefore be able to discriminate among all classes. Zhang &
Smart (2004) give an example of a single classifier with K-7 thresholds dynamically evolved
during the GP run. Usually, this approach is less likely to produce good models, since it will

have to handle all the problem complexity at once.
2.2.2.2. One-vs-others comparison

In this comparison, the problem of classifying K classes is decomposed into K * (K — 1)
binary problems, contrasting each class with others in pairs, to generate K classifiers, one for
each target class, and combining their predictions in a final algorithm result. Kishore et al.
(2000) presented a MCC GP in which the dataset was split through K classes instances. To

evolve each of the K classification models, a dataset containing interspersed classes splits of
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the target class with each of the other classes was built to compose the training set. With these
training sets, the authors evolved a GP run for each class solution and evaluated a measure
called strength of association, that assesses how much the solution was associated with its
class. This measure was used to decide which solution prediction was chosen as the final
algorithm prediction when more than one class model gave a positive prediction. The
algorithm fitness was the classification accuracy. Silva & Tseng (2008) also used K * (K — 1)
binary problems with pairwise comparisons but the classifiers were assessed together for the
GP fitness, evaluating the percentage of points assigned to more than one class. The goal of
the GP was to minimise this value, abdicating a pos-processing to combine the classifiers’

predictions.
2.2.2.3. One-vs-all comparison

In this comparison, the problem of classifying K classes is decomposed into K binary
problems, contrasting each class with all others once, to generate K classifiers, one for each
target class. The predictions of these K classifiers are then combined in a final algorithm

result. In GP context, these K classifiers can be evolved in four different ways:

(i)  In independent runs, simply running the algorithm K times, one for each

class, with the dataset split for the corresponding one-vs-all comparison.

(ii)  In the same run, but in different subpopulations. The subpopulations can be
totally separated or they can interchange their individuals. If individuals
cannot interchange between subpopulations, the subpopulations are called

islands. Otherwise, the subpopulations are called demes (Wilson, 1977).

(iii)  All together in the same population, but as independent individuals. The
individuals evolve as in a standard GP implementation, but at each
generation they are evaluated and set to be responsible for classifying one of

the target classes.

(iv)  All together as a team. It corresponds to evolving all classifiers in the same
population together, dependently. The team is an individual in which the
root node combines the results of its members. Each team member is a single
threshold classifier that is specialised in a corresponding class. Both the team
and its members evolve in the GP process. Thus, the two-level nature of
evolving K classifiers that are combined to be a single GP solution becomes

explicit in this approach. Evolving only the specialists can produce strong
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individuals that perform poorly for the combined prediction. Nevertheless,
the specialists should also evolve individually to be able to improve the team's
output. For that to happen, it is necessary to define their individual evolution
criteria, ze. their individual fitness. Therefore, the team's approach creates a
new decision requirement that is to define how the team fitness will be shared
and distributed among the team’s members. This is called the credit
assignment problem (Brameier & Banzhaf, 2007). The team outcome will be
the class whose specialist member gives a positive result. It could happen that
more than one team member gives a positive result for the same data instance.
Then, the team will require a disambiguation procedure, to define which of

the positive classes will be its final classification result.

There are many studies in literature using these approaches. For example, Lin et al. (2007)
used the (i) independent runs approach, proposing a multi layer with independent multi
populations GP for MCC problems. In each run, the first layer used the training set
configured for one specific target class. Before the last layer the proposed GP had many
solutions, one for each population. In the last layer, the solutions obtained in the previous
layer were combined in a single population, and a single GP solution was produced. The final
prediction decision was given by a measure called z-value (Chien et al., 2004). This measure is
obtained by splitting the training set to produce statistics for the classifiers and these statistics
are used in a disambiguation step, if necessary, to decide the final classification. Chen & Lu
(2007) used the (ii) island subpopulation approach in which the specialised solutions of a
MCC GP evolved using the convex hull of the Receiver Operating Characteristic (ROC)
curve as their fitness measure. Then, for each observation the classifiers made their
predictions and the final GP prediction was decided by majority voting among classes
models. Smart & Zhang (2005) used the (iii) all together with independent individuals
approach for evolving all classifiers in a single GP run with solutions evaluated for every
target class at each generation. The solution that provided the best separation for a binary
class problem was assigned to be the classifier of that class. For the GP prediction, the data
instance was evaluated by all K solutions and was assigned to the class to which it has the

highest probability of belonging to.

Haynes et al. (1995) published pioneering work using the (iv) team's approach with STGP.
Their focus was in the role of the crossover operator in making team populations evolve in
coordination. The presented crossover operator essentially controlled if individuals

specialised in classifying a target class could exchange genetic material with individuals
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specialised in other target classes. In a later and more complete publication, Haynes & Sen
(1997) proposed five crossover operators: (1) the team-branch, in which the exchange can
occur between any specialist of one team at any point and any specialist of another team at
any point; (2) the team-all, in which every specialist of a team exchanges genetic material at
two independent random points with the correspondent specialist of another team; (3) the
team-all-random, in which every specialist of a team exchanges genetic material with random
specialists of another team (not necessarily of the same specialisation); (4) the team-uniform,
that randomly sets pairs of specialists, one from each parent team but from any specialisation
class, to participate in the crossover. Then, these paired specialists exchange genetic material
at random points; and (v) the team-k-cross, in which a defined number (k) of crossover
points are defined in each team, independently of how many there will be in each specialist.
For the problem the author studied, the team-uniform was the best crossover operator, since

it sped up the evolution and increased the team fitness (that is, the GP fitness its own).

There are also mixed approaches. In Brameier & Banzhaf (2007), the authors applied the
team approach together with the demes subpopulation approach for two binary
classifications and a regression problem with LGP. Lichodzijewski & Heywood (2008)
presented a mixed independent individuals and team approach, in a GP that evolves the
training subset (called point population), the individual binary classifiers and the team, each
in a separate evolution process. The training set populations had the objective of selecting
useful training sets for the classification task. The classifiers population had the objective of
evolving good binary predictors. Finally, the team had the objective of evolving good
multiclass predictors. Soule & Komireddy (2007) also presented a mixed independent
individuals and team approach in which specialist individuals evolved in islands. At each GP
generation, for each specialisation class two individuals were selected for crossover and
mutation. The offsprings replaced two low fitness teams. Thomason & Soule (2007)
presented a variation of this approach in which teams are selected and replace individuals in

islands too.

The next section presents the new design developed in this work for a MCC GP with a mixed

approach for independent individuals and teams evolution.
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3. Progressively insular cooperative GP

In the real world there is no definitive best strategy between having strong individuals that
can perform extremely well on their own or having just good individuals that together can do
a great job. It depends mostly on the task. However, in a probabilistic reasoning, as used in
MCC GP context, the best of both worlds can be explored: strong individuals that can
interplay well will produce a more robust outcome. When the individual has to work on its
own, it does its job well and when the team cooperates, it improves the individuals' good

decisions. It is like having a "dream team" to produce the best possible result.

The present work proposes the Progressively Insular Cooperative (PIC) GP, a one-vs-all
mixed individuals and teams approach for cooperative MCC GP. Subpopulations of
specialist individuals begin as demes but further in the algorithm evolution they can become
islands. The main idea is to create a flexible cooperative GP in which specialists can be strong
individually but also good in cooperating. For this purpose, the rate of interaction between
specialists of different classes can be changed over the algorithm evolution. It can vary from
unrestricted cooperation to no cooperation at all. Specialists evolve independently from the
teams’ evolution. The teams evolve with improved individuals, giving priority to the stronger

ones but also giving the chance to weaker individuals to participate in the team.

It is important to evolve the team because it is the team that makes the final multiclass
classification. However, this brings two difficulties to GP: (i) the credit assignment, already
mentioned in section 2.2.2.3 One-vs-all comparison, and (ii) the fact that the specialist
individuals do not evolve enough when the evolution is guided by the teams’ performance
(Soule & Komireddy, 2007). The credit assign problem is hard to solve because when
individuals interact they create synergy, ze., the effect of their combined work can be bigger
than the sum of the effect of the individuals separately. The second difficulty, the limitation
of specialists’ development in a team-based evolution, is related to the fact that if individuals’
evolution is associated with the team's evolution, the search space exploration by the
individuals can be slowed down. For example, it can happen that some change in the
individual's structure would produce an improvement in its own performance, but a decrease
in the team's performance. In this case, the individual will not be allowed to change, which

means that it is not allowed to explore the search space properly.

The balance between exploration and exploitation of the search space is decisive in GP
performance. Depending on the problem and on the algorithm settings, it can be more

advantageous to promote one or other. Exploration means to look more widely, broadly, to
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farther sections of the search space. Exploitation means to look more closely, in more detail,
to a pre-explored search space section. To have too much exploration means to do a random
walk in the search space and to have too much exploitation means to be trapped in a small
portion of that. It is not guaranteed that specialists that evolve without being guided by the
teams' evolution will properly explore and exploit the search space. Nonetheless, if their
evolution is independent from the teams, it will be easier to control this balance. That is why
it is important to allow specialist individuals to evolve by themselves. As explained above, the
specialist individuals evolution in a team-based GP can be done through islands, totally
separated subpopulations, or demes, overlapping subpopulations. Working with
specialisation islands can restrain the search space exploration because solutions tend to
become all similar through the GP evolution process, depending on the algorithm and
problem configurations (Leung et al., 1997). It is not guaranteed that having all individuals
in the same population, an extreme full demes situation, permitting them to exchange genetic
material with individuals from other specialisations indiscriminately, will work. On one
hand, it can lead solutions to explore novel and worthy portions of the search space. In a
tree-based GP, e.g., one specialist solution can share a part of its tree that is crucial for
discriminating its class and thus to help another specialist tree in separating its own class
instances from those of the class of the specialist that had shared the code. On the other hand,
one specialist solution can share just irrelevant genetic material, making new solutions
explore novel but worthless areas of the search space that will not contribute to their

improvement.

In a traditional GP, solutions have all the same specialisation and the balance between
exploration and exploitation is carried mainly by crossover and mutation rates and the
selection pressure, which will define which solutions will go over mutation and which will go
over crossover to form the next generation population. In a cooperative GP, the interaction
among specialists can also help to control this balance. In a LGP study, Luke & Spector
(1996) found that restricting the interaction of the individuals with individuals of the same
specialisation improved the algorithm performance. Soule (2000) made experiments in a GP
regression problem and concluded that heterogeneity among teams is necessary but not
sufficient, while individuals’ high specialisation, that is related with heterogeneity, is key for
improving the algorithm performance. Nevertheless, it is not yet clear in literature how to
benefit from the balance between cooperation and the evolution of highly specialised

individuals to properly explore and exploit the search space.
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In the present study, variations in the level of specialists interaction over time during
algorithm evolution were explored. Individuals begin the algorithm distributed in class-based
demes that detach over the evolution process up until working fully as islands. The idea is to
enable the search space exploration more intensively in the beginning of the evolution and, as
the individuals become more prepared for their specialised task, to intensify the search space

exploitation.

Figure 6 shows a diagram of the PIC GP evolution. Part A shows in detail the specialists
evolution. In the initial phase, specialists are in demes, that work like overlapping
subpopulations. Two individuals specialised in different classes can undergo a crossover
operation and generate offspring for any class. The level of interaction among demes
decreases at each generation. Later the algorithm starts working in the islands phase, when
individuals can make crossover only with individuals of the same specialisation class. Part B
of this figure shows the teams' evolution. Initially, teams are composed of the best individuals
from the specialists’ population. Then, at the start of each generation, new teams are created
with evolved specialists that are included in teams’ population to participate in the selection
process. This means the teams' evolution receives an input of new genetic material at each
generation. If this new genetic material didn't come from the specialists' population, this
insertion could be prejudicial to the GP evolution, making the algorithm vary too much and
to lose a significant portion of the learned information. However, the new genetic material
was already improved by the specialists' evolution. After selection, the teams' evolution
follows the standard GP steps, crossover and/or mutation, to create the next generation
population.

The next sections describe in detail how each step of PIC GP works and its entire algorithm is
described in Algorithm 4.

3.1. Specialists evolution components

3.1.1. Solutions structure

The specialists are trees with a specialisation class. To classify instances, the tree has a logistic

function (Eq. 1) at its root node and uses the trheshold 0.5 for classes discrimination.

The definition of the class in which individuals are specialised can be done in two ways. It
can be automatic, simply set by the class for which the individual works better, ze., has a
higher fitness. Or it can be assigned by the algorithm to balance the number of specialists in

the population.
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Figure 6: Progressively Insular cooperative GP. A: the specialists’ evolution process. It begins with
demes that can be transformed into islands over the algorithm evolution. B: the parallel teams
evolution that at each generation receives new teams from the specialists population (2) and proceeds
with a traditional GP selection and variation steps. Source: the author.

3.1.2. Solutions fitness measures

As mentioned in Chapter 2, the fitness is responsible for guiding the evolution direction.

Since in PIC GP the specialised solution's goal is to make predictions for one single class, its
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fitness is a measure of the quality of the classification of the class in which the solution is

specialised. It can be one of the four following options:

» Accuracy: it is the percentage of corrected classified observations for a given class. It is

calculated as follows:

B 4TP, +#TN, B
dCCy = JTP,+#FP, + #TN, + #FN,

, where #T'P - is the number of true positive classifications for class k&, #7' N is the
number of true negative classification for class £, #F Py is the number of false
positive classifications for class £ and #FNj is the number of false negative

classifications for class 4.

» Fuzzy accuracy: it is a measure of the strength/certainty of the predictions that are
obtained. This is made by the application of a fuzzy concept on the accuracy
evaluation taking into account that the last step for obtaining predictions is the
conversion of a continuous outcome, the logistic value of the solution, into a binary
value. Generally, the farthest the logistic value is from the threshold in the direction
of the correct prediction, the more trustworthy the prediction should be. The
opposite is also true, because if the outcomes are all close to the threshold, small
variations in the input data will more easily make the resulting logistic value cross the
classes threshold. Surely, this relation will depend on the statistical distribution of the

features and on the tree structure. It is calculated as follows:

3 2(Ipy~0.5) + X 2#(0.5-1=)

Al = - (3)

, where Iy are the logistic outcomes of true positive classifications, /= are the

logistic outcomes of true negative classifications and NV is the total number of

instances.

»  Receiver Operating Characteristic (ROC): The ROC curve is a tradeoff between
sensitivity and specificity. For a single threshold point on the curve it becomes a
simple arithmetic mean between the true positive and the true negative rates and it

can be evaluated as (Chien et al., 2004):

#TP HTN
ROC, =05 % ( o ) (4)
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, where #P is the number of positive instances of the class £ and #Nj is the

number of negative instances of the class 4.

> Fscore: it is the harmonic mean of precision and recall rates of a target class:

__ 2= precision;, * recall;
f score; = precision, + recall, where: (5)

HTP,

preczszonk = W (6)

HTP,

and recallk = m (7)

The precision assesses the proportion of positive results that truly are positive and the

recall assesses the proportion of correctly classified positives.

3.1.3. Specialists initial population

To ensure that there will be specialists of all classes in the initial population, after generating
initial trees with the RHH method, the individuals are equally relocated over the classes. For
each class, only the N/K best individuals are kept, where N is the size of the entire specialists
population and K is the number of target classes. If there are more than N/K individuals
specialised in a class, the remaining are randomly changed to other specialisation classes in
which the number of individuals are less than N/K . If N/K is not a natural number, the

next natural number is used.

Individuals that are relocated tend to have worse fitnesses and individuals that are not
relocated will start from a better point. It is expected that the GP evolution will improve
them all. Thus, the naturally best individuals for classifying a class are used for this and the
others have to learn to make the classification that they are designed for. Algorithm 2 shows

the PIC initialisation method.

Algorithm 2: Specialists population initialisation.

Define the population size N as a multiple of K.
Generate N individuals with rhh method.
for each k in target classes:
Keep the N/K best individuals and store the others.
Shuffle stored individuals.
for each m in subpopulation classes with less than N/K individuals:
while m has less than N/K individuals:
Include a stored individual.
Re-calculate the fitness of the included individual for the
new class specialisation.

O 00 NO VT A WN R

21



3.1.4. Specialists selection algorithm

In specialists’ population, if the algorithm is in the demes phase, the selection algorithm
works with two individuals at a time. The first individual is selected with roulette wheel or
tournament selectors. To keep the balance of specialists in the population, this individual is
chosen from a specific deme or island. The second parent is, then, selected with roulette
wheel or tournament over the entire population with the fitnesses weighted by the
cooperation intensity rate, the parameter that controls the quantity of interaction between
individuals from different specialisations. The algorithm 3 shows the PIC specialists’

selection methods for the demes algorithm phase.

Algorithm 3: Specialists’ selection method for demes algorithm phase.

1: Define k, the class of the first parent according to the class that
has less individuals in the new generation population.

2: if selection method is roulette wheel:

3: for each individual in population:

4: if the individual hasn't the specialisation class # k:

5: Recalculate its fitness:

6: fr=f*n

7: Select the second parent from the entire specialists population.
8: else:

9: Select tournament_size individuals from the entire population.
10: for each individual in tournament:

11: Recalculate its fitness:

12: f'=f*n

13: Select the individual with higher f' for the second parent.

14: return both parents.

Note that the selection does not determine the class of the second parent. Moreover, it is not
guaranteed that the offspring individuals will belong to the same specialisation class as the
parents. Consequently, in the end of a generation, the proportion of individuals in each
specialisation may change. Despite this, to control the class of the first parent, it is enough to

keep the number of individuals in specialisation groups approximately balanced.
3.1.5. Cooperation intensity rate

This parameter is used to lower the fitness of individuals from other specialisations when

specialists are competing in the second parent selection step, according to:

o= i<t ki #ky (8)
S = f; , otherwise.
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, where f; is the /-th individual's fitness, 7 is the cooperation intensity rate, k;is the z-th

individual's specialisation class and & is the specialisation class of the first selected parent.

The cooperation intensity rate (CIR) can be decreased over the evolution process by the
decrease rate, another parameter of the algorithm. The decrease rate reduces constantly at
each generation the rate of interaction among specialists over the GP evolution. This decrease
does not convert the algorithm to the island approach when using the tournament selection
for the second parent, even if the CIR goes down to zero. If the CIR is zero, the fitness of the
specialists from other classes than the class of the first parent will all be zero. Despite that, it
can happen that the tournament is composed of these individuals of other specialisation
classes because the tournament is made randomly, without considering the individuals'

fitness. Therefore, the subpopulations will still be demes, since they will still interact.

When using tournament selection for the second parent, to transform the algorithm from
demes to islands phase, a phase change parameter is needed. It is the generation in which the

algorithm should change the approach from demes to islands subpopulations.

Thus, with these two parameters, the CIR decay and the phase change, the demes could
begin the evolution with overlapping areas that would be reduced over the generations up to

a moment in which they have no more overlapping areas and are transformed into islands.

3.1.6. Crossover and mutation specialists operators

For crossover and mutation, the PIC GP uses the one point crossover with two offsprings

and the one-point mutation operators.

3.2. Teams evolution components

3.2.1. Teams structure

A team is a tree with a prediction function at its root node, with arity of K, being K the
number of target classes in the dataset, and with one specialist of each class in each of its
branches. The specialists' structures are not changed on teams' evolution. It can be seen as if
the teams' building blocks were not other trees themselves, but black-box classifiers.
Considering that individuals can already exchange genetic material among them in a parallel
evolution process that is dedicated to their improvement, it is assumed that there is no any

major advantage in making individuals evolve into the teams’ population.
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3.2.2. Teams prediction

When working with teams for MCC, if only one of its members gives the positive prediction,
it is the specialisation class of this member that will be the GP prediction. However when
there is more than one positive result among team members, some technique is necessary to

decide which prediction to choose.
In the present work, the team prediction is given by one of the following options:

> Softmax: it uses the softmax (Eq 9) result of the specialists’ logistic outcomes.
o), = = Jj=1..K 9)

The softmax function normalises the input values into a probability distribution
consisting of probabilities that are proportional to the exponentials of the input
values. Therefore, the team's decision is to choose the classifier that gives the higher

probability of a positive outcome.

> Specialist weighted: it considers that not all the team members have the same quality
in their predictions. So, before using the specialists logistic outcomes in the softmax
function, the individuals logistic outcomes are weighted by their respective fitness,

which is a measure of their individual prediction abilities. It is calculated as follows:
I =fxlI (10)
, where f"is the fitness of the specialist and / is its logistic outcome for a single data
observation.
3.2.3. Teams initial population

The teams' population starts with one special team, deterministically created with the best
specialist of each class from the specialists' population. The other teams are created with
specialists selected with a roulette wheel selection from the specialisation subpopulations.

3.2.4. Teams elitism

If the best team has the same fitness as the previous best team, the best team with the best

fitness for the test partition is kept in the population deterministically. Otherwise, if the best
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team of a generation has better fitness then the best-so-far team, the new team is kept in the

teams' population.

3.2.5. Teams crossover operator

The crossover operator of teams exclusively allows them to exchange entire branches of the
same class. In other words, they can only exchange specialised individuals for individuals of

the same specialisation class. Figure 7 shows an example of the teams crossover operator.

Parent 1 Parent 2 Offspring 1 Offspring 2

a° break point a! break point o2 o3

P
/
S1 S2 St S21 @ S10 S2 @ S11 S21
I Specilists exchange I

N

Figure 7: Teams crossover. Teams exchange entire specialist trees from the same class. Source: the
author.

3.2.6. Teams mutation operator

The mutation operator is responsible for the innovative changes in GP individuals, which is
important to allow the algorithm to explore the search space. Tree teams mutations are

implemented in PIC GP.

> Random teams mutation: this is the most innovative teams mutation operator. A

random specialist is substituted by a new random tree (Figure 8A).

> Specialist teams mutation: a random specialist is substituted by an individual with the
same specialisation from the specialists’ population. This is less innovative than the
random teams mutation, but it still can provide more innovation than the
introduction of new teams in the selection step because it does not prioritise the best
individuals (Figure 8B).

»  Weaker specialist team mutation: it works like the specialist teams mutation, but
instead of removing a random specialist from the team, it chooses the specialist to be
exchanged with a probability inversely proportional to the individuals' fitnesses
(Figure 8C).
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A) Random team mutation

Parent 1

.‘ o°i |

: / random break point

New individual

®

Offspring

01

10 830 S10 @ 830
B) Specialist team mutation
Parent 1 New specialist Offspring
I'4 00“ ( vo‘ !
@ / random break point
C) Weak specialist team mutation
Parent 1 New specialist Offspring
‘ proportional 2
oo to inverse of fithess ( 97
| random break point
S1 S2: S3 19 52 @

Figure 8: Teams mutation operators. Random: a random specialist is exchanged by a new

random tree. Specialist: a random specialist is exchanged by a random individual with same

specialisation in from specialists' population. Weak specialist: works like the specialist teams

mutation, but the mutation point is chosen with inversely proportional probability to the

team individuals' fitnesses. Source: the author.
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Algorithm 4: PIC GP Algorithm.

O 0o NO VT A WN PR

=
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11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

Set:

generations G, target classes K
specialists population size N, teams population size M
specialists crossover and mutation probabilities
teams crossover and mutation probabilities
specialists elitism, teams elitism
specialists selection methods, teams selection method.
Initialise specialists sp_population.
Initialise teams tm_population.
for each g in G:
Instantiate sp_population’.
until sp population’ size is smaller than N:
Select two specialists with specialists selection.
if makes crossover:
Apply specialists crossover to parent specialists
Set the specialisation class and fitness of offsprings.
if makes mutation:
Apply specialists mutation to parent specialists
Set the specialisation class and fitness of offsprings
Add offspring 1 to sp_population’.
if sp _population' size is smaller than N:
Add offspring 2 to sp_population’.
if apply specialists elitism:
Apply elitism to sp_population’
Replace sp_population with sp_population’.
for i from @ to i < M/2:
Instantiate a team t.
for each class in K:
Select a class K specialist from sp_population.
Put the selected specialist in t.
Add t to tm_population.
Instantiate tm_population’.
until tm population’ size is smaller than M:
Select a team from tm_population.
if apply crossover:
Select another team from tm_population.
Apply crossover to generate two teams offspring.
if apply mutation:
Apply mutation to generate two teams offspring.
Add offspring 1 to tm_population’.
if exists offspring 2:
if tm_population’ size is smaller than N:
Add offspring 2 to tm_population’.
if apply teams elitism:
Apply elitism to tm_population'’
Replace tm_population with tm_population’.
return the best-so-far team.
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4. Results and discussion

Three multiclass datasets from the UCI Machine Learning Repository (archive.ics.uci.edu)
were analysed, namely the Iris (IRS), the Thyroid (THY) and the Yeast (YST) datasets. The
IRS was used to explore the proposed algorithm and its parameters. The others were used to

assess the algorithm results in comparison to other classification algorithms from literature.

4.1. Experimental design

4.1.1. Dataset partition

All experiments were run 30 times, each with different data partitioning and algorithm seed.
Thus, the variability observed in the results comes from the randomness in the data and in
the algorithm. As shown in Figure 9, the data was first split into S k-folds crossvalidation
(80% for train, 10% for test and 10% validation partitions). Then, the instances were shuffled

and the k-fold crossvalidation partitioning was repeated 6 times.

80% [ 10% | 10% |
2 z . Repeated
L 6 times

Train Test ’—l Validation D

Figure 9: Data partition for the 30 runs used in experiments.
4.1.2. Run settings

In all experiments the trees were initialised with the RHH method with a tree maximum
depth of 3. Specialists elitism and teams elitism were always used. The node set of the tree's
structure was composed by +, —, X and protected +. The terminal set was composed by
ephemeral constants from ]0, 1[ € R interval in addition to the dataset features. The other
default settings are presented in Table 1. The modified settings for each experiment are

presented in the corresponding section.

4.1.3. Measurements

The measurements taken in all experiments are described in Table 2. Only results that are
relevant for the discussion are presented in this Chapter, but the complete results are

provided in Appendix A as supplementary material.
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PIC GP Setting IRS THY YST
Dataset normalisation No No Yes
Trees maximum depth 6 10 10
Trees fitness measure f-score f-score f-score
Specialists population 90 90 120

size

Parent 1 selection
Parent 2 selection
Crossover probability
Mutation probability
Maximum generations
Phase change

Specialists interactions
initial rate

Specialists interactions
rate decrease

Team fitness method
Teams evolution

tournament size 3
tournament size 3
0.8
0.2
250
200

1.00

0.00

Accuracy
No

tournament size 3
tournament size 2
0.8
0.2
250
200

1.00

0.00

Accuracy
No

tournament size 3
roulette wheel
0.8
0.2
300
240

1.00

0.00

Accuracy
No

Table 1: PIC GP base settings used in experiments.

Measurement

Description

Accuracy mean (+sd)

Team fitness

Team fitness validation

Best team fitness

Best team validation fitness
Specialists interactions

Trees mean size
Phenotype diversity

Genotype diversity

Number of specialists of each

class

Mean fitness for each class

Phenotype diversity for each

class

Genotype diversity for each

class

Accuracy mean + one standard deviation.

The train fitness of the best team in a generation.

The validation fitness of the best team in a generation.

The train fitness of the best-so-far team.

The validation fitness of the best-so-far team.

The number of times that two individuals of different
specialisations participate in a crossover operation.

The mean of the tree sizes of the individuals of a population.

The variance of the fitnesses of the individuals of a

population.

The number of different tree structures in a population
divided by its number of individuals.

specialised subpopulation.

The number of individuals in each specialised subpopulation.
The mean of the training fitness of the individuals in each
The phenotype diversity for each specialised subpopulation.

The genotype diversity for each specialised subpopulation.

Table 2. Experiment measurements.



4.1.4. Dataset balance

To train individuals for each class, converting the all-vs-all method into the one-vs-all
method, the dataset was divided in two parts, the positive cases (with the instances that
belong to a target class) and the negative cases (with the instances that do not belong to that

target class).

One problem that can arise from this procedure is that it may produce training data with an
important imbalance between the positive and negative classes. In this scenario, the class with
fewer observations is more likely to be misclassified than the class with more observations
(Chawla et al., 2002). To balance back the instances, one can either replicate the less frequent
class instances, or subsample the more frequent ones. The first option modifies the
distribution of the target class data, since with replicated data the dataset variability will
decrease. The second may cause the loss of information from the dataset. There is no ideal
solution. The PIC GP presented in this thesis uses the second approach and it can be run

with or without balancing. The following options were implemented in the algorithm:

» Full: All data instances are used as in raw data.

» Balanced: The class instances that are more frequent are randomly sampled to have
the same number as of less frequent class instances. The sampling is repeated in each
GP generation, thus providing different instances from the more frequent class to the
algorithm training each time. With this strategy, no class prevails by quantity of
instances and the classifier will lose less information over the algorithm evolution.
This procedure does not balance originally unbalanced data, it only reverses the
unbalancing caused by the split of the data into only two classes. If a class has too
many or too few instances in the dataset, the only thing this procedure will do is to
use as much information as possible to train the model with balanced data. Even if
this means training the model for this specific class with less information than the

models for other classes.

Figure 10 shows the balance between positive and negative cases for the three datasets
analysed. The IRS dataset is the least unbalanced because it has only three target classes and
they are perfectly balanced, with exactly the same number of instances for each class. The
THY also has only three classes, but they are already unbalanced in the original data (92.6%
of the data for hypothyroidism, 5.1% for hyperthyroidism and 2.3% for no disease). So, when
split for a one-vs-all training, it becomes very unbalanced for all target classes (92.6% positive

for hypothyroidism vs 7.4% negative; 5.1% positive for hyperthyroidism vs 94.9% negative;
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2.3% with no disease vs 97.7% with disease). The YST dataset has seven target classes and also

becomes highly unbalanced for each target class.

Instances by class

Iris Dataset Thyroid Dataset Yeast Dataset
1500 4

1000 4
500
04 0+

Sestosa Versicolor  Virginica No desease Hyperthyroidism Hypothyroidism CYT ERL EXC ME1 ME2 ME3 MIT NUC POX VAC

1504

6000 1

1001
4000+

o

50+
2000+

Number of instances

. Positive instances . Negative instances

Figure 10: Classes balances for each of the tested datasets.

Table 3 presents the results for experiments conducted with full (not balanced) and with

balanced methods for the three analysed datasets using the default GP settings.

Mean <+ (sd) Best
Train Validation Train Validation
IRS full 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000
balanced 0.972 + (0.020) 0.964 + (0.049) 0.992 1.000
THY full 0.967 + (0.013) 0.967 + (0.014) 0.986 0.992
balanced 0.969 + (0.010) 0.968 + (0.013) 0.986 0.990
vsT full 0.536 + (0.027) 0.380 + (0.172) 0.570 0.642
balanced 0.530 + (0.032) 0.406 =+ (0.130) 0.567 0.608

Table 3: Accuracy in train and validation partitions for dataset balance experiments.

The proposed sampling balanced method did not improve the results for any of the analysed
datasets (t-test p-values 0.671 for training and 0.805 for validation in IRS; 0.421 for training
and 0.621 for validation in THY; 0.326 for training and 0.469 for validation in YST).

4.2. Iris dataset

This is a very known dataset that has 4 real number features for flower measures (length and
width of the petals and of the sepals) and 3 target classes, the flower species. As seen in Figure
11, the target class setosa is linearly separable from the other two species based on petal length
and width. For sepal length, the sefosa is more different from virginica than from versicolor,

while the latter two are similar between them. For sepal width, versicolor and virginica are
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almost matching and setosa is more different but still difficult to separate. Therefore, the

easiest class to classify is setosa.

Iris dataset

Petal length Petal width Sepal length Sepal width
[

12

0.8

Density

0.5

&l
4
! 4
J m i % Oi J
0 0- 00 0.0
2 4 6 0.0 0.5 1.0 1.5 20 25

v v T v v v T v v 1
5 6 7 8 20 25 30 35 40 45

Species l:‘ setosa l:‘ versicolor D virginica

Figure 11: Iris dataset features distribution for each target class.

4.2.1. Specialists selection algorithm

The following selector methods were used in the specialists selection experiments:

Method First parent Second parent
T3_R Tournament size 3 Roulette wheel
RT3 Roulette wheel Tournament size 3
T3_T3 Tournament size 3 Tournament size 3
T5_R Tournament size 5 Roulette wheel
R_T5 Roulette wheel Tournament size 5
T5_T5 Tournament size 5 Tournament size 5

Table 4: Specialists selection algorithms used in the experiments.

For all selection methods, the best accuracy for the validation partition was 1.00 (Table 5).
The accuracy was also 1.00 for the training partition for T5_R and T5_T5 selection
methods. The best accuracy mean for the training partition was 0.977 for R_T5 and for the
validation partition it was 0.978 for the T'5_T5 method. For the training set, the difference
was significant for T5_R vs. all other methods (all pairwise adjusted p-values in a Tukey HSD
test smaller than 0.001). This method also had the worst training set accuracy amongst the
best runs of all methods. The other methods were not significantly different among them.
For the validation set, there was no significant difference among the methods (p-value 0.267

for a one-way ANOVA test).

The selection methods for first and second parents have different effects in PIC GP. The first
parent operator just controls the selection pressure inside the subpopulation of one single

specialisation class. Apart from the selection pressure, the second parent operator also
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controls the interaction among specialists of different classes. This can be seen in Figure 12,
which shows the number of interactions between specialists from different classes for the

tested selection methods.

Mean + (sd) Best run
Train Validation Train Validation
R_T3 0.973 + (0.014) 0.953 + (0.056) 0.992 1.000
R_T5 0.977 + (0.011) 0.967 + (0.042) 0.992 1.000
T3_R 0.974 + (0.016) 0.953 + (0.047) 1.000 1.000
T3.T3 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000
T5 R 0.944 + (0.049) 0.951 + (0.068) 0.983 1.000
T5_T5 0.974 + (0.018) 0.978 + (0.036) 1.000 1.000

Table 5: Mean, one standard deviation and the best accuracy for training and validation sets in the
specialists selection method experiments. In bold are the best values of the respective column.
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Figure 12: Specialists interactions mean and one standard deviation through GP evolution for each

specialists selection method.

Independently of the selection method used for the first parent, the interaction among
specialists of different classes were the same for the same selection method used in the second
parent (T3_R is very similar to TS_R; R_T3 to T3_T3; R_TS to T5_T5). Moreover, the
bigger the tournament for the second parent, the more interactions among different
specialists happened in each generation, as can be seen in the same plots. The first step of

tournament selection is completely random, ze. it is not related with the individuals'

33



fitnesses. However, the number of individuals in each class subpopulation affects the
selection pressure, favouring individuals of the more abundant subpopulation. In addition to
the fact that the first parent is chosen to balance the number of individuals among the
specialisation classes, favouring the more abundant class in the second parent selection
increased the interactions among classes. Since the setosa species is the easiest to discriminate,
its specialists tend to have higher fitness and, hence, to be more prevalent in the algorithm
population. This can be seen in Figures 13 and 14, which show the number of individuals
and the mean fitness in each class subpopulation for each generation of the experiments
T3_T3 and T5_TS5. These plots show that in the demes phase of the algorithm the number
of specialists in subpopulations of the classes versicolor and virginica tended to decrease while
the number of setosa specialists tended to increase. These plots also show that the fitness of
setosa specialists tended to be higher than the fitness of versicolor and virginica specialists,

giving to setosa individuals an even higher competitive advantage.

In addition to this selection advantage, the higher number of serosa individuals is also related
to the higher proportion of offspring generated with this specialisation class. As the sefosa is
the easiest class to classify, the individuals' fitness for this class will tend to be higher and,

hence, in PIC GP most of the new individuals will be set to be specialised in this class.

Number of specialists for each class
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Figure 13: Number of specialised individuals in each class subpopulation through GP evolution for

each specialists selection method.
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Mean fitness for each class
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Figure 14: Mean of fitness of training partition in each class subpopulation through GP evolution for
each specialists selection method.

The selection methods with the tested settings were not important for team fitness, tree sizes,
genotype and phenotype population diversities and genotype and phenotype subpopulation

diversities. Detailed results are presented in Appendix A.

4.2.2. Specialists fitness measures

The specialist fitness methods used in the experiments are listed in Table 6.

Method Description
Accuracy The accuracy of the individual classification for its own class. Eq. (2).

Fuzzy accuracy The accuracy for its own class with correct answers weighted by its
logistic values. Eq. (3).

ROC The convex hull of the ROC curve for the threshold 0.5 for the individual
classification for its own class. Eq. (4).
f-score The f-score of the individual classification for its own class. Eq. (7).

Table 6: Specialists fitness measures used in experiments.

There was no significant difference among specialists fitness measures for final GP accuracy
(p-value 0.323 for training set and 0.549 for validation set in a one-way ANOVA test), as can
be seen in Table 7. The best mean in the training set was found using the ROC fitness

measure and in the validation test it was found using the f-score. Again, all the best validation

set accuracies were 1.00.

35



Mean + (sd) Best run
Train Validation Train Validation
Accuracy 0.969 + (0.020) 0.962 <+ (0.053) 0.992 1.000
Fuzzy accuracy 0.974 + (0.014)  0.956 =+ (0.051) 0.992 1.000
ROC 0.977 = (0.009) 0.949 + (0.057) 0.992 1.000
f-score 0.974 £ (0.015) 0.967 + (0.042) 0.992 1.000

Table 7: Mean, one standard deviation and the best accuracy for training and validation sets in the

specialists fitness measures experiments. In bold are the best values of the respective column.

The ROC and the fscore fitnesses do not consider only the overall correct classification
without differentiating if the correct predictions are in positive/negative or most/less
frequent classes. This can be important when the dataset is unbalanced and, for a more
complex dataset, the different fitness measures may affect the final algorithm classification
accuracy. Consider an extreme (but not unusual) condition in which a classifier predicts all
instances for the same class. If the correspondent class is prevalent, the accuracy will be high.
The ROC fitness is the arithmetic mean between the true positive and the true negative rates
and it will balance these results. The f-score is the harmonic mean between precision and
recall, which respectively assess the correctness of the positive predictions and the ability of

the classifier to find the positive instances of the data. This offset will also balance the results.
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Figure 15: Mean and one standard deviation of train and validation best team fitness through the GP

evolution for each specialists fitness method.
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Figure 15 shows the algorithm fitness evolution for the four experiments. The differences in
the beginning of the evolution process are small and indicate that for this dataset and GP

settings, the specialists fitness measure was not important to control the algorithm speedness

of convergence.
Phenotype and genotype diversities for each class

Accuracy Accuracy Accuracy

Setosa Versicolor Virginica
009 w 1 : e E
0.754 { 0.754 w 0.75 M
0.50 - 0.50} 0.504
0.254 0.25 1 0.254
0.004 Phase changei 0.00 J Phase changeé 0.00 4 Phase changei

0 25 50 75 100 125 150 175 200 225 250

Fuzzy accuracy

0 25 50 75 100 125 150 175 200 225 250

Fuzzy accuracy

0 25 50 75 100 125 150 175 200 225 250

Fuzzy accuracy

Setosa Versicolor Virginica
1 W 1700} E - |
- ; 0.75_‘ w 0.75+ w
0.50 - 0.50 -‘ 0.50+
0.254 0.25} 0.254
0.00 4 Phase change: 0.00+ Phase changef 0.004 Phase changeE
I S S S S B e e I S S S S B e e e S S e S
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
ROC ROC ROC
Setosa Versicolor Virginica
1A00_i MW 1.001 007 ;
0.75- : 0475" M 0.75- W"‘f\’w
0.50 - 0.50 - 0.50 -
0.25 0.254 0.254
0.00+ Phase changeé 0.00 4 Phase char\ges 0.00 - Phase changei
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
F-score F-score F-score
Setosa Versicolor Virginica
1007 w e : h ;
0.75 : 0.754 M 075 %
0.50 4 0.50 0.50 4
0.254 0.25+4 0.254
0.00 - Phase changei 0.00 Phase changei 0.00 1 Phase change:

0 25 50 75 100 125 150 175 200 225 250
Generations

0 25 50 75 100 125 150 175 200 225 250
Generations

— Genotype — Phenotype

0 25 50 75 100 125 150 175 200 225 250
Generations

Figure 16: Genotype and phenotype diversities mean and one standard deviation for each class
subpopulation through GP evolution for each specialists fitness method.

Figure 16 shows the phenotype and the genotype diversities for each specialisation class. The
maximum of the phenotype diversity is reached in the beginning of the evolution for sezosa

and this is more prominent for fuzzy accuracy and f-scores measures. Due to the very
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numerical nature of the specialists’ fitness measures, these two can vary more precisely and,
hence, their use will allow the creation of populations with individuals with more phenotype
diversity. Table 8 presents numerically this result, by showing the maximum value of the
specialised classes phenotype diversity and the corresponding generation in which this was
achieved. The pattern is similar for the entire population, but since the subpopulations

showed differences in phenotype diversity, class-specific results are presented.

For each class subpopulation, the higher values of phenotype diversity were achieved using
either the fuzzy accuracy or the f-score fitness measures. In a scenario in which the algorithm
is converging prematurely, it can be helpful to have a fitness measure that allows better
discrimination of the individuals. For all the fitness measures, the setosa class subpopulation

had higher diversity than the other two.

Method Species Maximum value  Generation
setosa 0.081 8
Accuracy versicolor 0.040 71
virginica 0.050 18
setosa 0.140 14
Fuzzy accuracy versicolor 0.087 76
virginica 0.097 30
setosa 0.084 13
ROC versicolor 0.045 51
virginica 0.043 83
setosa 0.134 11
J-score versicolor 0.099 48
virginica 0.097 90

Table 8: Maximum phenotype diversity achieved for each class subpopulation and the
generation in which it was achieved. In bold are the highest values for each class subpopulation.

The specialists fitness measures with the tested settings were not important for team fitness,

tree sizes and specialists interactions. Detailed results are presented in Appendix A.

4.2.3. Phase change

The phase change experiments tested different generations in which the algorithm design

changed from demes to islands, as presented in Table 9.

For the cooperation intensity rate used in the experiments (equals 1.0 during the entire
evolution of the algorithm) and the other algorithm settings, there was no difference among
the four methods tested. Table 10 presents the mean and best final PIC GP accuracy for each

of the four experiments. The differences were not significant (p-values 0.819 for training set
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and 0.346 for validation set with a one-way ANOVA test). Again, all the best validation set

accuracies were 1.00.

Method Description

Full islands The algorithm worked with island subpopulations (no interactions)
during the entire evolution.

Gen 125 The algorithm worked with demes subpopulations (with interactions)
until generation 125 (50% of total generations).

Gen 200 The algorithm worked with demes subpopulations until generation 200
(80% of total generations).

Full demes The algorithm worked with demes subpopulations during the entire
evolution.

Table 9: Phase change generations used in the experiments.

Mean + (sd) Best run
Train Validation Train Validation
Full islands 0.972 + (0.018) 0.962 + (0.049) 0.992 1.000
Gen 125 0.971 + (0.012) 0.980 =+ (0.036) 0.983 1.000
Gen 200 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000
Full demes 0.970 + (0.019) 0.960 =+ (0.057) 0.992 1.000

Table 10: Mean, one standard deviation and the best accuracy for training and validation sets in the phase
change experiments. In bold are the best values of the respective column.
The phase change with the tested settings also were not important for team fitness, specialists
interactions, tree sizes, genotype and phenotype population diversities and genotype and

phenotype subpopulations diversities. Detailed results are presented in Appendix A.

4.2.4. Cooperation intensity rate
4.2.4.1. Initial rate (CIR,)

The following values of CIR were tested: 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. For all experiments,

the rate was kept constant for the entire PIC GP evolution.

For all CIR tested values, the best runs achieved accuracy of 1.000 for the validation set
(Table 11). For CIR 0.6 and CIR 0.8, the best accuracy in the training set was also 1.000.
The highest mean accuracy in the training and validation sets were obtained for CIR 0.8 and
CIR 0.6, respectively. Nevertheless, the differences among CIRs were not statistically
significant (the one-way ANOVA test for the differences among the training fitness had the

p-value 0.377 and for the differences among the validation fitness it was 0.843).

39



Mean + (sd) Best run
CIR, Train Validation Train Validation
0.0 0.975 + (0.011) 0.958 + (0.057) 0.992 1.000
0.2 0.976 + (0.012) 0.969 + (0.060) 0.992 1.000
0.4 0.971 + (0.019) 0.969 + (0.038) 0.992 1.000
0.6 0.977 + (0.010) 0.973 + (0.041) 1.000 1.000
0.8 0.978 + (0.011) 0.971 = 0.034 1.000 1.000
1.0 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000

Table 11: Mean, one standard deviation and the best accuracy for training and validation sets in the CIR

experiments. In bold are the best values of the respective column.

The number of specialists' interactions presented different behavior for different CIR values,

as seen in Figure 17. The specialists’ interactions decreased slightly over the algorithm
evolution in experiments with CIR from 0.0 to 0.4. For CIR 0.6 and CIR 0.8, they reached a

maximum in the early generations, decreasing afterwards. For CIR 1.0, in contrast, they

increased over the evolution process.
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Figure 17: Specialists interactions mean and one standard deviation through GP evolution for each CIR

values experiment.

In general, the specialists’ interactions increased with the increase of CIR. However, this

correlation was not linear because it also depends on the number of individuals in each class

specialisation, as explained in the section describing the specialists’ selection experiments. The

bigger the difference in the number of individuals among the specialised subpopulations, the
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more the individuals of different specialisations will interact when using the tournament
selection for the second parent. Figure 18 shows that the pattern of the number of specialists
in each class was different for different CIR values. For CIR values from 0.0 to 0.4, the
number of individuals in each specialisation subpopulation was stable and balanced. For CIR
0.6 to 0.8, the setosa specialists started to prevail at the expense of the decrease of the versicolor
and virginica number of specialists. But this pattern tended to smooth with the algorithm
evolution, more intensely for CIR 0.6 and less for CIR 0.8. For CIR 1.0 the prevalence of

setosa individuals lasted for the entire demes phase of the algorithm.

Also as a consequence of the differences in the number of individuals among specialisation
classes, the genotype and the phenotype diversities in the subpopulations were affected, as

can be seen in Figure 19.

With CIR 0.0, the phenotype diversity of all class subpopulations decreased after changing
from demes to island phase of the algorithm. This also happened with CIR 0.2 and CIR 0.4
for the setosa class. This decrease in phenotype diversity shows that the diversity in the demes
phase was maintained through interactions of individuals from different specialisations.
However, with lower interaction rate, this diversity was not enough to produce good search
space exploration. It was kept "artificially” by the interaction among different specialists and
as soon as the subpopulations were separated in islands, the phenotype diversity decreased.
With CIR 0.0 to CIR 0.8, the genotype diversity of versicolor and virginica classes (the
weaker classifiers) also had a pronounced decrease after the algorithm phase change. For the
setosa (the strongest classifiers) this happened only for CIR 0.6. For CIR of 1.0, the genotype
diversity presented the opposite behavior for the sefosa subpopulation: it increased after the
phase change. Hence, for the classifiers of this class, the island approach was better in terms
of genotype diversity. For the weaker classifiers the genotype diversity using CIR 1.0 was kept

after the phase change.
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Number of specialists for each class
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Figure 18: Number of specialised individuals in each class subpopulation through GP evolution for

each CIR values experiment.
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Phenotype and genotype diversities for each class
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Figure 19: Genotype and phenotype diversities mean and one standard deviation for each class

subpopulation through GP evolution for each CIR values experiment.
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Figure 20: Mean of fitness of training partition in each class subpopulation through GP evolution for

each CIR values experiment.
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The CIR value was also important for the mean fitness of class subpopulations over the
evolution process. With higher CIR values, ze. with more interactions between specialists of
different classes, the mean fitness of the class subpopulations increased earlier for all classes.
Before the phase change, setosa and versicolor classes' subpopulations had higher mean fitness
for CIR 1.0 and the virginica class for CIR 0.8. Comparing only the values before the phase
change, the weakest class subpopulation (versicolor, the hardest to separate) presented the
greatest difference (0.128) between the mean fitness with CIR 0.0 and with CIR 1.0. For the
virginica class subpopulation this difference was 0.055 and for the sezosa it was 0.048. After
the phase change, setosa had the higher mean fitness with CIR 0.0 (0.913), versicolor with
CIR 1.0 (0.811) and vzrginica with CIR 0.0 and CIR 0.6 (0.818). This can be seen in Table
12 and in Figure 20.

CIR Class Before After Difference
setosa 0.845 0.913 0.086
0.0 versicolor 0.671 0.757 0.077
virginica 0.741 0.818 0.064
setosa 0.856 0.910 0.054
0.2 versicolor 0.743 0.791 0.049
virginica 0.780 0.816 0.037
setosa 0.843 0.902 0.059
04 versicolor 0.756 0.794 0.038
virginica 0.763 0.799 0.035
setosa 0.873 0.897 0.024
0.6 versicolor 0.754 0.793 0.039
virginica 0.780 0.818 0.038
setosa 0.873 0.893 0.020
0.8 versicolor 0.752 0.780 0.028
virginica 0.802 0.816 0.013
setosa 0.893 0.892 -0.001
1.0 versicolor 0.799 0.811 0.012
virginica 0.796 0.809 0.014

Table 12: Mean of differences between the mean fitnesses of the class subpopulations 50 generations
before and 50 generations after the phase change. In bold are the best values for each class before and

after the phase change.

Table 12 also shows that the smaller the CIR value, the bigger the increase of the
subpopulations’ mean fitness after the phase change. This is due to both smaller mean fitness
values before the phase change and higher values after the phase change. Although with CIR
0.0 the mean fitness of the specialised subpopulations increased more with the phase change
(as described above), for the weakest classifier subpopulation (versicolor) the highest mean

fitness was reached with CIR 1.0 after phase change. This was not observed for the strongest
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classifier subpopulation (sezosz), for which the highest mean fitness was reached with CIR
0.0 after phase change. Thus, a higher CIR value favoured an improvement of the

subpopulation of weaker classifiers for the final algorithm prediction.

Two interesting conclusions can be drawn from the results presented above. First, that before
the phase change, the interaction among the specialists of different classes was helping
especially the weaker classifiers. Second, that the islands phase is also important for
subpopulations to evolve. Both demes and islands seem to be important for best algorithm

evolution.

The different CIR values with the tested settings were not important for team fitness, tree

sizes and genotype and phenotype population diversities. Detailed results are presented in

Appendix A.

4.2.4.2. Rate decrease

The following values of CIR rate decrease were tested: 0.00, 0.05 and 0.10. For 0.05 and 0.10
values, as the initial rate was 1.00 for all experiments, the CIR becomes smaller than 0.001 in
generations 136 and 67, respectively, z.e. too early in the evolution process. Therefore, the
evolution patterns for (i) interactions between specialists, (ii) population and subpopulation
diversities, (iii) subpopulation mean fitness and (iv) number of individuals were similar to

those presented in the previous section (see Appendix A).

Table 13 presents the algorithm mean, one standard deviation and best accuracies for each
CIR decrease experiment. There was no significant difference among them (p-values of 0.721
for training set and 0.522 for validation set). Again, all the best validation set accuracies were

1.00. Lower decrease rates would need to be tested to allow for a more detailed discussion.

Mean % (sd) Best run
CIR decrease Train Validation Train Validation
0.00 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000
0.05 0.971 £ (0.020) 0.973 + (0.038) 1.000 1.000
0.10 0.974 + (0.012) 0.960 + (0.054) 0.983 1.000

Table 13: Mean, one standard deviation and the best accuracy for training and validation sets in the
CIR decrease rate experiments. In bold are the best values of the respective column.

4.2.5. Team prediction

The team prediction methods used in the team predictions are presented in Table 14.
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Method Description

Softmax The softmax (Eq. 9) of the team members logistic values.
Specialist The softmax of the team members logistic values weighted by the
weighted members' fitnesses (Eq. 10).

Table 14: Team prediction methods used in experiments.

Table 15 shows the final fitness results obtained for the Softmax and Specialist weighted
methods. There was no significant difference between these two methods (p-value 0.230 for a
t-test for the training set means and 0.682 for the validation set means). This could be due to
the small differences among the team members' fitness and, therefore, the small differences in
the weights used to adjust the logistic outcomes of the specialists. In the weighted accuracy
experiments, the mean of the final fitness in serosa specialists was 0.893, in versicolor
specialists it was 0.791 and in virginica specialists it was 0.818. Again, all the best validation

set accuracies were 1.00.

Mean + (sd) Best run
Train Validation Train Validation
Softmax 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000
Specialist weighted  0.969 + (0.018) 0.962 + (0.042) 0.992 1.000

Table 15: Mean, one standard deviation and the best accuracy for training and validation sets in
the team prediction experiments. In bold are the best values of the respective column.

The different team prediction methods with the tested settings were not important for all

other algorithm measurements. Detailed results are presented in Appendix A.

4.2.6. Team evolution

For the experiments on team evolution the following settings were used (Table 16):

PIC GP Setting Value
Team fitness measure Accuracy
Teams population size 5
Selection method Tournament size 3
Crossover probability 0.5
Mutation probability 0.5
Mutation operator Specialist
Team elitism True

Team fitness method Accuracy

Table 16: PIC GP settings used in teams' experiments.

47



4.2.6.1. Teams mutation operator

The following team mutation operator methods were used in the experiments (Table 17):

Method Description

Random A random specialist of the team is replaced by a new random tree.

Specialist A random specialist of the team is replaced by a specialist of the same
specialisation from the specialists population.

Weaker A specialist of the team is probabilistically chosen according to the

inverse of its fitness to be replaced by a specialist of the same
specialisation from the specialists population.

Table 17: Team mutation operator methods used in the experiments.

The results for the teams mutation operator experiments show that the specialist method was
slightly better than the others for the generalisation ability of the algorithm (Figure 21). The
mean of the validation fitness of the specialist method was greater than the mean of the

training fitness through almost the entire evolution process.

Best team fitness
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Figure 21: Mean and one standard deviation of train and validation best team fitness through the GP

evolution for each team mutation operator.

Table 18 presents the final accuracy of PIC GP using the three teams mutation operator
methods that were tested. Again, all the best validation set accuracies were 1.00. For the
training set, the final mean accuracy of the algorithm was not significantly different among
methods (p-value 0.673 with a one-way ANOVA). For the validation set, on the other hand,
the difference was significant (p-value 0.011 in the one-way ANOVA) and a posterior
Tukey's HSD test indicated that this difference was between the specialist and the weaker
mutation operators (adjusted p-value 0.009 for this pair). Thus, the random mutation wasn't
too innovative for this dataset. In fact, the results of these experiments showed that the group
performance isn't compromised even by including a non-evolved individual in the team as

occurs when using the random method. Moreover, the weaker mutation didn't improve the
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team performance. These results demonstrate the strength of working in teams. For more
complex classification problems though, it is expected that the random method will decrease

the team performance because it becomes more crucial to work with stronger members.

Mean + (sd) Best run
Train Validation Train Validation
Random 0.976 + (0.012) 0.969 =+ (0.060) 0.992 1.000
Specialist  0.977 = (0.011)  0.998 + (0.012) 0.992 1.000
Weaker 0.974 + (0.015) 0.967 + (0.042) 0.992 1.000

Table 18: Mean, one standard deviation and the best accuracy for training and validation sets in the

team mutation experiments. In bold are the best values of the respective column.

4.2.7. Final remarks

The classification accuracy was high both in the training and in the validation partitions for
all experiments, indicating that, for this dataset, the algorithm performed well independently
of the settings used. The best accuracy mean for the specialist experiments was achieved in
phase change tests for a change halfway in the evolution process, at generation 125 (mean
accuracy 0.971 for the training set and 0.980 for the validation set). The best of all means was
achieved in the teams mutation operator experiments (mean accuracy 0.977 for the training

set and 0.998 for the validation set obtained using the specialist method).

A comparison of the mean fitness obtained with the default experiment settings without
teams evolution and with teams evolution using the specialist team mutation operator was
made to assess the importance of teams evolution in PIC GP for the IRS dataset. The fitness
means using teams evolution were 0.003 and 0.031 greater than without teams evolution for
the training and validation sets, respectively. T-tests resulted in p-values 0.475 and <0.001,
respectively. A statistically significant increase in accuracy in the validation set of 3% is
considered relevant. It shows that the teams evolution improved the algorithm generalisation

ability.

All experiments have shown a good generalisation ability in the model, as the validation set
accuracy was always similar to the training set accuracy and the best validation set accuracy
was always 1.00. This is a widely explored dataset and some published results indicate that it
is easy to classify. Louis Ong in the Kaggle website published a study' with a multilayer NN

in which the classification accuracy in the test set was also 1.00. In any case, there are also

1

https://www.kaggle.com/louisong97/neural-network-approach-to-iris-dataset
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studies in the literature in which the classifiers did not show such good performances. For
example, Mendes et al. (2001) published a study on a co-evolutionary system for discovering
fuzzy classification rules and their model had achieved the mean accuracy of 0.953 (+0.071)

for the test set.

Tests with other combinations of the settings, like using the roulette wheel for the second
parent specialists' selection or other cooperation intensity rates for the phase change
experiments may impact more strongly on algorithm performance than observed in the
experiments presented above. Moreover, tests with a dataset less linearly separable will
probably reveal more differences amongst the settings tested in this work. However, the
experiments presented above gave extremely valuable hints on how the selection method, the
CIR and the demes to islands phase change can affect differently the subpopulations of the
classifiers depending on their strength. These relationships have shown that the specialists'
interactions can benefit the weaker classifiers and that the islands phase is important for the

improvement of all classifiers.

4.3. Thyroid dataset

The thyroid (THY) dataset contains registers of patients for three thyroid disease states,
namely, no disease, hypothyroidism and hyperthyroidism. It has 21 features, of which 15 are
binary and 6 are real numbers, for 7200 observations. The disease state is the prediction class.
Figures 22 and 23 present the distribution of these features for each target class. None of the
features is able to linearly separate any of the classes and, hence, class discrimination is not
easy for this dataset (overlapping distributions for continuous features and similar yes/no

proportions for binary features).

As reported in Table 3, the best PIC GP run for the THY dataset, using the algorithm's

default settings (Table 1), achieved an accuracy of 0.992 for the validation set.

Thyroid dataset

Age TSH T3 TT4 T4U FTI
6004 204 204

2.0 | 154 30 15+

104 204 10+

Density

1.04 2004 1604

4 10 - 4
0.5 5 0 5

0.0+ 04 04 04 0- 04
I S L T T T T T T T T T T T T T T T T T T T
0.000.250.500.751.0C 0.0 0.2 04 0.00 0.05 0.10 0.15 0.0 0.2 04 0.6 0.050.10 0.15 0.20 0.0 0.2 04 06

Figure 22: Thyroid dataset real number features distribution for each target class.
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Thyroid dataset

Sex On_thyroxine Query_on_thyroxi On_antithyroid_m Sick
1.00 1.004 1.00 4 1.00 4 1.004
0.75+ 0.75 0.75 0.75+ 0.754
0.50 1 0.50 4 0.50 4 0.50 5 0.50 4
0.254 0.254 0.254 0.254 0.254
0.00- - - 0.00- - - 0.00- . - 0.00- - - 0.00 ~ -
No Yes No Yes No Yes No Yes No Yes
Pregnant Thyroid_surgery 1131_treatment Query_hypothyroi Query_hyperthyrc
1.00 4 1.00 4 1.00 4 1.00 { g —— | 1.00{ e —— |
0.754 0.754 0.754 0.754 0.754
0.50 1 0.50 1 0.50 4 0.50 4 0.504
0.254 0.254 0.254 0.254 0.254
0.004 - — | 0.00+ - — | 0.00+ - — | 0.00+ - - | 0,004 - -
No Yes No Yes No Yes No Yes No Yes
Lithium Goitre Tumor Hypopituitary Psych
1.00 A 1.00 4 1.00 4 1.00 < 1,004
0.75+ 0.75+ 0.75- 0.75- 0.754
0.504 0.504 0.50- 0.50 - 0.50 4
0.254 0.254 0.254 0.254 0.254
0.00 - - 0.00- - - 0.00- - - 0.00- - - 0.004 . .
No Yes No Yes No Yes No Yes No Yes

Class D No desease D Hyperthyroidism D Hypothyroisim

Figure 23: Thyroid dataset binary features distribution for each target class.

The algorithm performed quite well, since it outperformed some results found in literature
without any fine tuning. For example, Tsakonas (2006) tested four grammar-guided GP
configurations: with decision trees, with fuzzy rule-based training, with fuzzy petri-nets and
with neural networks. The best training accuracies were respectively 0.988, 0.947, 0.942 and
0.940 for the training set and 0.976, 0.941, 0.940 and 0.940 for the validation set. Ionita &
Ionita (2016) also compared methods of machine learning for this dataset. They found that
the best runs for NB, Decision Trees, Multilayer Perceptron and Radial Basis Function
Network achieved classification accuracies of 0.917, 0.969, 0.951 and 0.960, respectively.
They also made a second experiment, manually removing Query on_thyroxine,
Query_on_hypothyroid, Query_on_hyperthyroid features and were able to improve the
accuracy of the Decision Trees classifier to 0.973, but obtained worst results for the other
classifiers. Finally, Zhang et al. (2017) published a comparison among the following machine
learning algorithms for MCC: Stochastic Gradient Boosting Decision Trees (GBDT),
Random Forests (RF), Extreme learning machine (ELM), Support Vector Machine (SVM),
C4.5, Sparse Representation based Classification (SCR), KNN, Logistic Regression (LR),
AdaBoost (AB), NB and Deep Learning (DL). The best accuracy that they could obtain for
each classifier for the THY dataset is presented in Table 19. Of note, PIC GP outperformed
9 of the 11 algorithms tested by the authors and was worse than GDBT and RF.
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Algorithm Validation fitness Algorithm Validation fitness
PIC GP 0.992 SCR 0.903 ©
GDBT 1.000 KNN 0.903 ©
RF 1.000 LR 0.931 ©
ELM 0.903 © AB 0.931 ©
SVM 0.903 © NB 0.903 ©
c4.5 0.986 DL 0.903 ©

Table 19: Accuracy for PIC GP and the achieved accuracy for each classifier reported in Zhang et al. (2017) for
the THY dataset. (+) indicates the algorithms that performed better than PIC GP, (-) those that performed
worse and (=) the one that performed equal to PIC GP.

4.4. Yeast dataset

The Yeast (YST) dataset contains data from molecular analysis of yeast. The dataset has 8 real
number features of biochemical analysis for 1484 observations. The target classes are 10

possible cellular localisation sites of proteins in the organism.

In Figure 24 it is possible to see that the features distributions are mostly overlapped. In
features mcg, gvh, alm, mit, erl and pox it is possible to see two groups of overlapped features
distributions. Thus, it is expected that his dataset is even more difficult to classify than IRS
and THY.

Yeast dataset
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o] il
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Figure 24: Yeast dataset features distribution for each target class.

As reported in Table 3, the best PIC GP run for the YST dataset, using the algorithm's

default settings (Table 1), achieved an accuracy of 0.642 for the validation set.
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The PIC GP performance for this dataset is comparable with some results found in literature
without any fine tuning, again confirming the robustness of the algorithm. For a MCC GP
wrapper algorithm, Mufoz et al. (2015) found a median of 0.562 (best run < 0.62) for
classification accuracy for this dataset. The results for the 11 datasets studied by Zhang et al.
(2017), described in the previous section, are presented in Table 20. The PIC GP
outperformed 10 and it was worse than 1, but the difference to the best algorithm (ELM)
was only 0.007 while to the worst (DL) was 0.311.

Algorithm Validation fitness Algorithm Validation fitness
PIC GP 0.642 SCR 0.574 ©
GDBT 0.622 © KNN 0.574 ©
RF 0.622 © LR 0.621 ©
ELM 0.649 AB 0.412 ©
SVM 0.629 © NB 0.595 O
c4.5 0.513 © DL 0.331 ©

Table 20: Accuracy for PIC GP and the achieved accuracy for each classifier reported in Zhang et al. (2017) for

the YST dataset. (+) indicates the algorithms that performed better than PIC GP, (-) those that performed
worse and (=) the one that performed equal to PIC GP.
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5. Conclusions

The GP for multiclass classification (MCC) problems presented in this thesis combines the
advantages of evolving both strong individuals and teams composed of these individuals. The
algorithm is named Progressively Insular Cooperative (PIC) GP because its key feature is the
possibility to decrease progressively the level of interaction between individuals specialised in
classifying different classes followed by a complete separation of the specialised
subpopulations, allowing them to evolve with no interaction with other subpopulations, zc.
as islands. Moreover, teams of individuals specialised in different classes also can evolve in an
independent process from the evolution of the specialist individuals explained above. This
allows teams to work with already improved individuals to find the best possible

combination.

The modifications made in the standard GP for the evolution of specialist individuals were
the introduction of new parameters, changes in the selection step and modifications in the
individuals' fitness measures. The new parameters that were introduced are the cooperation
intensity rate (CIR), the rate of CIR decrease over the algorithm evolution and the
generation in which the algorithm starts working with totally separated specialised
subpopulations (islands). The selection step was modified to control the interaction between
specialists of different classes, using the introduced parameters. Different specialists’ fitness
measures were tested to improve the assessment of the individuals to better decide if they
should or not participate from the teams. The modifications made in the team evolution

were in the team prediction step and the team mutation operators.

The proposed PIC GP algorithm showed excellent performance for the three datasets tested
(Iris, Thyroid and Yeast from the UCI Machine Learning repository). Still there is scope for
further research with a more exhaustive exploration of its parameters. For example, with
more complex datasets and with other combinations of the settings, as indicated in the

experiments final remarks.

Importantly, the current work elucidated a major question that currently has no clear answer
in the available literature. As seen in the CIR experiments, team-based GP can benefit both
from the interaction between individuals specialised in different classes and from a more
restricted approach with interaction only between individuals of the same specialisation class.
The contribution of each approach to the algorithm's performance will depend on the
performance of each group of specialised individuals. A demes approach helps weaker groups

of specialist classifiers because they may benefit from receiving crucial genetic material from
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stronger groups. An island approach, on the other hand, will allow strong classifiers to evolve
to their best potential. The results indicate that the combination of both approaches may be
the best strategy, at least for some datasets. Starting with a demes approach is important to
improve the weaker performers. Later, when all groups are strong, the algorithm can change
to an islands approach to allow all the specialised classifiers to reach their best. The demes
approach slows down the evolution process of stronger specialised groups, as expected for
any kind of team work. However, it can benefit GP algorithms in MCC tasks. Indeed, the
results presented here indicate that cooperation can benefit collective evolution. On the other
hand, when all classifiers perform well from the beginning, it is expected that a demes

approach would not be beneficial.

The recommended progression of the current work is to use this new information to
transform the PIC in the Adaptative Insular Cooperative GP. In its adaptative form, instead
of having the CIR, the CIR decrease and the phase change parameters fixed, they would
change according to the class subpopulations performance. It would adjust the CIR trying to
help the weaker classifiers and to change from demes to islands phase when the specialised

subpopulations had reached a good performance.

In addition, a more extensive exploration of the teams’ evolution is recommended. More
specifically, using the team's evolution with Genetic Algorithms instead of GP. As the
specialised trees do not evolve in this level of PIC GP, the teams will always have the same size

and, therefore, they can be a Genetic Algorithm solution.
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Appendix A



1. Experiments results

1.1. Iris Dataset
1.1.1. Specialists selection operator
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Figure 1: Mean and one standard deviation of train and validation team fitness through the GP evolution for

each selection method.
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Figure 2: Mean and one standard deviation of train and validation best team fitness through the GP evolution

for each selection method.
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Figure 3: Train and validation best team final fitnesses for each selection method.
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Figure 5: Trees sizes mean and one standard deviation through GP evolution for each specialists selection
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Figure 7: Number of specialised individuals in each class subpopulation through GP evolution for each
specialists selection method.
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Figure 8: Mean of fitness of training partition in each class subpopulation through GP evolution for each
specialists selection method.
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Phenotype and genotype diversities for each class
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Figure 9: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation
through GP evolution for each selection method.

Fitness

Fitness

1.1.2.

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

Accuracy

- Phase changeé

i S A e S s et e S S
0 25 50 75 100 125 150 175 200 225 250

F-score

I

Phase change

0 25 50 75 100 125 150 175 200 225 250
Generations

Specialists fitness measure

Team fitness

Fuzzy accuracy

1.00 1

0.754

0.50 1

0.254

0.00 4

ATV Ve e VWV e

Phase change !

0 25 50 75 100 125 150 175 200 225 250
Generations

Partition — Train — Validation

ROC

1.004

0.75+4

0.50 4

0.254

0.00

e '

/ﬂ“”'

Phase change

0 25 50 75 100 125 150 175 200 225 250
Generations

Figure 10: Mean and one standard deviation of train and validation team fitness through the GP evolution for

each specialists fitness method.

64



Best team fitness
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Figure 11: Mean and one standard deviation of train and validation best team fitness through the GP evolution
for each specialists fitness method.
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Figure 12: Train and validation best team final fitnesses for each specialists fitness method.
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Figure 14: Trees sizes mean and one standard deviation through GP evolution for each specialists fitness

method.
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Population diversity
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Figure 15: Trees sizes mean and one standard deviation through GP evolution for each specialists fitness

method. method.
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Figure 16: Number of specialised individuals in each class subpopulation through GP evolution for each

specialists fitness method.
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Mean fitness for each class
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Figure 17: Mean of fitness of training partition in each class subpopulation through GP evolution for each
specialists fitness method.
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Phenotype and genotype diversities for each class
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Figure 18: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation

through GP evolution for each specialists fitness method.
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1.1.3. Phase change
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Figure 19: Mean and one standard deviation of train and validation team fitness through the GP evolution for

islands-demes phase changing in different generations.
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Figure 20: Mean and one standard deviation of train and validation best team fitness through the GP evolution

for islands-demes phase changing in different generations.
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Figure 21: Train and validation best team final fitnesses for islands-demes phase changing in different
generations.
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Figure 22: Specialists interactions mean and one standard deviation through GP evolution for islands-demes
phase changing in different generations.
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Figure 23: Trees sizes mean and one standard deviation through GP evolution for islands-demes phase changing
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Figure 25: Number of specialised individuals in each class subpopulation through GP evolution for

islands-demes phase changing in different generations.
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Mean fitness for each class
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Figure 26: Mean of fitness of training partition in each class subpopulation through GP evolution for
islands-demes phase changing in different generations.
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Phenotype and genotype diversities for each class
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Figure 27: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation

through GP evolution for islands-demes phase changing in different generations.
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Figure 28: Mean and one standard deviation of train and validation team fitness through the GP evolution for
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Figure 29: Mean and one standard deviation of train and validation best team fitness through the GP evolution
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Figure 30: Train and validation best team final fitnesses for each CIR values experiment.
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Figure 31: Specialists interactions mean and one standard deviation through GP evolution for CIR values
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Number of specialists for each class
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Figure 34: Number of specialised individuals in each class subpopulation through GP evolution for each CIR

values experiment.
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Mean fitness for each class
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Figure 35: Mean of fitness of training partition in each class subpopulation through GP evolution for each CIR
values experiment.
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Phenotype and genotype diversities for each class
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Figure 36: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation

through GP evolution for each CIR values experiment.
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1.1.4.2. Rate decrease
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Figure 37: Mean and one standard deviation of train and validation team fitness through the GP evolution for

different cooperation intensity rate decrease values.
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Figure 38: Mean and one standard deviation of train and validation best team fitness through the GP evolution

for different cooperation intensity rate decrease values.
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Figure 39: Train and validation best team final fitnesses for different cooperation intensity rate decrease values.
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Figure 40: Specialists interactions mean and one standard deviation through GP evolution for different
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Figure 41: Trees sizes mean and one standard deviation through GP evolution for different cooperation

intensity rate decrease values.
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Figure 42: Trees sizes mean and one standard deviation through GP evolution for different cooperation

intensity rate decrease values.
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Figure 43: Number of specialised individuals in each class subpopulation through GP evolution for each

different cooperation intensity rate decrease values.
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Mean fitness for each class
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Figure 44: Mean of fitness of training partition in each class subpopulation through GP evolution for different
cooperation intensity rate decrease values.
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Phenotype and genotype diversities for each class
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Figure 45: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation
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1.1.5. Team prediction
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Figure 46: Mean and one standard deviation of train and validation team fitness through the GP evolution for
each team prediction method.
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Figure 47: Mean and one standard deviation of train and validation best team fitness through the GP evolution
for each team prediction method.
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Figure 48: Train and validation best team final fitnesses for each team prediction method.
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Figure 49: Specialists interactions mean and one standard deviation through GP evolution for each team
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Figure 50: Trees sizes mean and one standard deviation through GP evolution for each team prediction method.
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Figure 51: Trees sizes mean and one standard deviation through GP evolution for each team prediction method.
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Figure 52: Number of specialised individuals in each class subpopulation through GP evolution for each team
prediction method.
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Figure 53: Mean of fitness of training partition in each class subpopulation through GP evolution for each team
prediction method.
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Figure 54: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation
through GP evolution for each team prediction method.
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Figure 56: Mean and one standard deviation of train and validation best team fitness through the GP evolution
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Figure 57: Train and validation best team final fitnesses for each team mutation operator.
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Figure 58: Specialists interactions mean and one standard deviation through GP evolution for each team
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Figure 59: Trees sizes mean and one standard deviation through GP evolution for each team mutation operator.
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Figure 60: Trees sizes mean and one standard deviation through GP evolution for each team mutation operator.
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Figure 61: Number of specialised individuals in each class subpopulation through GP evolution for each team

Population diversity

Generations

Generations

mutation operator.

93

Generations




Mean fitness for each class

Random Random Random
Setosa Versicolor Virginica
0.9- 0.94 0.94
[] 0 1]
£ 06- £ 061 £ 06-
c c =
© ©
g g $
0.3+ 0.31 = 0.34
0.0+ Phase changef 0.0+ Phase changef 0.0+ Phase changef
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
Specialist Specialist Specialist
Setosa Versicolor Virginica
0.9 0.9 094
[} 123 1]
o =1 - =
£ 06 £ 06 2 06+
c =4 c
3 3 3
20.3- EOS- E0.3-
0.0+ Phase change: 0.04 Phase changef 0.0+ Phase changef
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
Replace weaker Replace weaker Replace weaker
Setosa Versicolor Virginica
0.9+ 0.9+
[} 123 w
£ 06- £ £ 06-
c c c
© ©
3 3 3
= 34 = = 03+
0.0+ Phase changef 0.04 Phase change 0.0+ Phase changef
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
Generations Generations Generations

Figure 62: Mean of fitness of training partition in each class subpopulation through GP evolution foreach team
mutation operator.
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Phenotype and genotype diversities for each class
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Figure 63: Genotype and phenotype diversities mean and one standard deviation for each class subpopulation
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