370 research outputs found

    Stronger Lower Bounds and Randomness-Hardness Trade-Offs Using Associated Algebraic Complexity Classes

    Get PDF
    We associate to each Boolean language complexity class C the algebraic class a·C consisting of families of polynomials {fn} for which the evaluation problem over Z is in C. We prove the following lower bound and randomness-to-hardness results: 1. If polynomial identity testing (PIT) is in NSUBEXP then a·NEXP does not have poly size constant-free arithmetic circuits. 2. a·NEXP RP does not have poly size constant-free arithmetic circuits. 3. For every fixed k, a·MA does not have arithmetic circuits of size nk. Items 1 and 2 strengthen two results due to Kabanets and Impagliazzo [7]. The third item improves a lower bound due to Santhanam [11]. We consider the special case low-PIT of identity testing for (constant-free) arithmetic circuits with low formal degree, and give improved hardness-to-randomness trade-offs that apply to this case. Combining our results for both directions of the hardness-randomness connection, we demonstrate a case where derandomization of PIT and proving lower bounds are equivalent. Namely, we show that low-PIT ∈ i.o-NTIME[2no(1)]/no(1) if and only if there exists a family of multilinear polynomials in a·NE/lin that requires constant-free arithmetic circuits of super-polynomial size and formal degree

    Tighter Connections between Derandomization and Circuit Lower Bounds

    Get PDF
    We tighten the connections between circuit lower bounds and derandomization for each of the following three types of derandomization: - general derandomization of promiseBPP (connected to Boolean circuits), - derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected to arithmetic circuit lower bounds over the same field), and - derandomization of PIT over the integers (connected to arithmetic circuit lower bounds over the integers). We show how to make these connections uniform equivalences, although at the expense of using somewhat less common versions of complexity classes and for a less studied notion of inclusion. Our main results are as follows: 1. We give the first proof that a non-trivial (nondeterministic subexponential-time) algorithm for PIT over a fixed finite field yields arithmetic circuit lower bounds. 2. We get a similar result for the case of PIT over the integers, strengthening a result of Jansen and Santhanam [JS12] (by removing the need for advice). 3. We derive a Boolean circuit lower bound for NEXP intersect coNEXP from the assumption of sufficiently strong non-deterministic derandomization of promiseBPP (without advice), as well as from the assumed existence of an NP-computable non-empty property of Boolean functions useful for proving superpolynomial circuit lower bounds (in the sense of natural proofs of [RR97]); this strengthens the related results of [IKW02]. 4. Finally, we turn all of these implications into equivalences for appropriately defined promise classes and for a notion of robust inclusion/separation (inspired by [FS11]) that lies between the classical "almost everywhere" and "infinitely often" notions

    Improved Extractors for Recognizable and Algebraic Sources

    Get PDF

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]∘GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]∘GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]∘GFORMULA[s]\circ \mathcal{G} on more than 1/2+Δ1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k⋅4k⋅R(k)(G)⋅log⁥(n/Δ)⋅log⁥(1/Δ))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]∘PTFk−1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(s⋅R(2)(G)⋅log⁥(s/Δ)⋅log⁥(1/Δ))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that Δ\varepsilon-fools FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]∘LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2⋅s1/4⋅log⁥(n)⋅log⁥(n/Δ))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where Δ≀1/n\varepsilon \leq 1/n. (3) There is a randomized 2n−t2^{n-t}-time #\#SAT algorithm for FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}, where t=Ω(ns⋅log⁥2(s)⋅R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]∘XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/log⁥n)2^{O(n/\log n)}

    Distributional PAC-Learning from Nisan's Natural Proofs

    Full text link
    Carmosino et al. (2016) demonstrated that natural proofs of circuit lower bounds for Λ\Lambda imply efficient algorithms for learning Λ\Lambda-circuits, but only over \textit{the uniform distribution}, with \textit{membership queries}, and provided \AC^0[p] \subseteq \Lambda. We consider whether this implication can be generalized to \Lambda \not\supseteq \AC^0[p], and to learning algorithms which use only random examples and learn over arbitrary example distributions (Valiant's PAC-learning model). We first observe that, if, for any circuit class Λ\Lambda, there is an implication from natural proofs for Λ\Lambda to PAC-learning for Λ\Lambda, then standard assumptions from lattice-based cryptography do not hold. In particular, we observe that depth-2 majority circuits are a (conditional) counter example to the implication, since Nisan (1993) gave a natural proof, but Klivans and Sherstov (2009) showed hardness of PAC-learning under lattice-based assumptions. We thus ask: what learning algorithms can we reasonably expect to follow from Nisan's natural proofs? Our main result is that all natural proofs arising from a type of communication complexity argument, including Nisan's, imply PAC-learning algorithms in a new \textit{distributional} variant (i.e., an ``average-case'' relaxation) of Valiant's PAC model. Our distributional PAC model is stronger than the average-case prediction model of Blum et al. (1993) and the heuristic PAC model of Nanashima (2021), and has several important properties which make it of independent interest, such as being \textit{boosting-friendly}. The main applications of our result are new distributional PAC-learning algorithms for depth-2 majority circuits, polytopes and DNFs over natural target distributions, as well as the nonexistence of encoded-input weak PRFs that can be evaluated by depth-2 majority circuits.Comment: Added discussio
    • 

    corecore