115 research outputs found

    Between proper and strong edge-colorings of subcubic graphs

    Full text link
    In a proper edge-coloring the edges of every color form a matching. A matching is induced if the end-vertices of its edges induce a matching. A strong edge-coloring is an edge-coloring in which the edges of every color form an induced matching. We consider intermediate types of edge-colorings, where edges of some colors are allowed to form matchings, and the remaining form induced matchings. Our research is motivated by the conjecture proposed in a recent paper of Gastineau and Togni on S-packing edge-colorings (On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019), 63-75) asserting that by allowing three additional induced matchings, one is able to save one matching color. We prove that every graph with maximum degree 3 can be decomposed into one matching and at most 8 induced matchings, and two matchings and at most 5 induced matchings. We also show that if a graph is in class I, the number of induced matchings can be decreased by one, hence confirming the above-mentioned conjecture for class I graphs

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    On star edge colorings of bipartite and subcubic graphs

    Full text link
    A star edge coloring of a graph is a proper edge coloring with no 22-colored path or cycle of length four. The star chromatic index χst′(G)\chi'_{st}(G) of GG is the minimum number tt for which GG has a star edge coloring with tt colors. We prove upper bounds for the star chromatic index of complete bipartite graphs; in particular we obtain tight upper bounds for the case when one part has size at most 33. We also consider bipartite graphs GG where all vertices in one part have maximum degree 22 and all vertices in the other part has maximum degree bb. Let kk be an integer (k≥1k\geq 1), we prove that if b=2k+1b=2k+1 then χst′(G)≤3k+2\chi'_{st}(G) \leq 3k+2; and if b=2kb=2k, then χst′(G)≤3k\chi'_{st}(G) \leq 3k; both upper bounds are sharp. Finally, we consider the well-known conjecture that subcubic graphs have star chromatic index at most 66; in particular we settle this conjecture for cubic Halin graphs.Comment: 18 page
    • …
    corecore