1,492 research outputs found

    Succinctness in subsystems of the spatial mu-calculus

    Full text link
    In this paper we systematically explore questions of succinctness in modal logics employed in spatial reasoning. We show that the closure operator, despite being less expressive, is exponentially more succinct than the limit-point operator, and that the μ\mu-calculus is exponentially more succinct than the equally-expressive tangled limit operator. These results hold for any class of spaces containing at least one crowded metric space or containing all spaces based on ordinals below ωω\omega^\omega, with the usual limit operator. We also show that these results continue to hold even if we enrich the less succinct language with the universal modality

    Spatial logic of tangled closure operators and modal mu-calculus

    Get PDF
    There has been renewed interest in recent years in McKinsey and Tarski’s interpretation of modal logic in topological spaces and their proof that S4 is the logic of any separable dense-in-itself metric space. Here we extend this work to the modal mu-calculus and to a logic of tangled closure operators that was developed by Fernández-Duque after these two languages had been shown by Dawar and Otto to have the same expressive power over finite transitive Kripke models. We prove that this equivalence remains true over topological spaces. We extend the McKinsey–Tarski topological ‘dissection lemma’. We also take advantage of the fact (proved by us elsewhere) that various tangled closure logics with and without the universal modality ∀ have the finite model property in Kripke semantics. These results are used to construct a representation map (also called a d-p-morphism) from any dense-in-itself metric space X onto any finite connected locally connected serial transitive Kripke frame. This yields completeness theorems over X for a number of languages: (i) the modal mucalculus with the closure operator ; (ii) and the tangled closure operators (in fact can express ); (iii) , ∀; (iv) , ∀, ; (v) the derivative operator ; (vi) and the associated tangled closure operators ; (vii) , ∀; (viii) , ∀,. Soundness also holds, if: (a) for languages with ∀, X is connected; (b) for languages with , X validates the well-known axiom G1. For countable languages without ∀, we prove strong completeness. We also show that in the presence of ∀, strong completeness fails if X is compact and locally connecte

    An Objection to Naturalism and Atheism from Logic

    Get PDF
    I proffer a success argument for classical logical consequence. I articulate in what sense that notion of consequence should be regarded as the privileged notion for metaphysical inquiry aimed at uncovering the fundamental nature of the world. Classical logic breeds necessitism. I use necessitism to produce problems for both ontological naturalism and atheism
    • …
    corecore