5 research outputs found

    Space hierarchy theorem revised

    Get PDF
    AbstractWe show that, for an arbitrary function h(n) and each recursive function ℓ(n), that are separated by a nondeterministically fully space constructible g(n), such that h(n)∈Ω(g(n)) but ℓ(n)∉Ω(g(n)), there exists a unary language L in NSPACE(h(n)) that is not contained in NSPACE(ℓ(n)). The same holds for the deterministic case.The main contribution to the well-known Space Hierarchy Theorem is that (i) the language L separating the two space classes is unary (tally), (ii) the hierarchy is independent of whether h(n) or ℓ(n) are in Ω(logn) or in o(logn), (iii) the functions h(n) or ℓ(n) themselves need not be space constructible nor monotone increasing, (iv) the hierarchy is established both for strong and weak space complexity classes. This allows us to present unary languages in such complexity classes as, for example, NSPACE(loglogn·log∗n)⧹NSPACE(loglogn), using a plain diagonalization

    Strong optimal lower bounds for Turing machines that accept nonregular languages

    No full text
    In this paper, simultaneous lower bounds on space and input head reversals for deterministic, nondeterministic and alternating Turing machines accepting nonregular languages are studied. Three notions of space complexity, namely strong, middle, and weak, are considered; moreover, another notion called accept, is introduced. For all cases we obtain tight lower bounds. In particular, we prove that while in the deterministic and nondeterministic case these bounds are \u201cstrongly\u201d optimal\u2014in the sense that we exhibit a nonregular language over a unary alphabet exactly fitting them\u2014in the alternating case optimal lower bounds for tally languages turn out to be higher than those for arbitrary languages

    Sublogarithmic bounds on space and reversals

    Get PDF
    The complexity measure under consideration is SPACE x REVERSALS for Turing machines that are able to branch both existentially and universally. We show that, for any function h(n) between log log n and log n, Pi(1) SPACE x REVERSALS(h(n)) is separated from Sigma(1)SPACE x REVERSALS(h(n)) as well as from co Sigma(1)SPACE x REVERSALS(h(n)), for middle, accept, and weak modes of this complexity measure. This also separates determinism from the higher levels of the alternating hierarchy. For "well-behaved" functions h(n) between log log n and log n, almost all of the above separations can be obtained by using unary witness languages. In addition, the construction of separating languages contributes to the research on minimal resource requirements for computational devices capable of recognizing nonregular languages. For any (arbitrarily slow growing) unbounded monotone recursive function f(n), a nonregular unary language is presented that can be accepted by a middle Pi(1) alternating Turing machine in s(n) space and i(n) input head reversals, with s(n) . i(n) is an element of O(log log n . f(n)). Thus, there is no exponential gap for the optimal lower bound on the product s(n) . i(n) between unary and general nonregular language acceptance-in sharp contrast with the one-way case
    corecore