14 research outputs found

    A minimal classical sequent calculus free of structural rules

    Get PDF
    Gentzen's classical sequent calculus LK has explicit structural rules for contraction and weakening. They can be absorbed (in a right-sided formulation) by replacing the axiom P,(not P) by Gamma,P,(not P) for any context Gamma, and replacing the original disjunction rule with Gamma,A,B implies Gamma,(A or B). This paper presents a classical sequent calculus which is also free of contraction and weakening, but more symmetrically: both contraction and weakening are absorbed into conjunction, leaving the axiom rule intact. It uses a blended conjunction rule, combining the standard context-sharing and context-splitting rules: Gamma,Delta,A and Gamma,Sigma,B implies Gamma,Delta,Sigma,(A and B). We refer to this system M as minimal sequent calculus. We prove a minimality theorem for the propositional fragment Mp: any propositional sequent calculus S (within a standard class of right-sided calculi) is complete if and only if S contains Mp (that is, each rule of Mp is derivable in S). Thus one can view M as a minimal complete core of Gentzen's LK.Comment: To appear in Annals of Pure and Applied Logic. 15 page

    Computational interpretation of classical logic with explicit structural rules

    Get PDF
    We present a calculus providing a Curry-Howard correspondence to classical logic represented in the sequent calculus with explicit structural rules, namely weakening and contraction. These structural rules introduce explicit erasure and duplication of terms, respectively. We present a type system for which we prove the type-preservation under reduction. A mutual relation with classical calculus featuring implicit structural rules has been studied in detail. From this analysis we derive strong normalisation property

    From X to Pi; Representing the Classical Sequent Calculus in the Pi-calculus

    Full text link
    We study the Pi-calculus, enriched with pairing and non-blocking input, and define a notion of type assignment that uses the type constructor "arrow". We encode the circuits of the calculus X into this variant of Pi, and show that all reduction (cut-elimination) and assignable types are preserved. Since X enjoys the Curry-Howard isomorphism for Gentzen's calculus LK, this implies that all proofs in LK have a representation in Pi.Comment: International Workshop on Classical Logic and Computation (CL&C'08), Reykjavik, Iceland, July 200

    Three Dimensional Proofnets for Classical Logic

    Get PDF
    Classical logic and more precisely classical sequent calculi are currently the subject of several studies that aim at providing them with an algorithmic meaning. They are however ruled by an annoying syntactic bureaucracy which is a cause of pathologic non-confluence. An interesting patch consists in representing proofs using proofnets. This leads (at least in the propositional case) to cut-elimination procedures that remain confluent and strongly normalising without using any restricting reduction strategy. In this paper we describe a presentation of sequents in a two-dimensional space as well as a presentation of proofnets and sequent calculus derivations in a three-dimensional space. These renderings admit interesting geometrical properties: sequent occurrences appear as parallel segments in the case of three-dimensional sequent calculus derivations and the De Morgan duality is expressed by the fact that negation stands for a ninety degree rotation in the case of two-dimensional sequents and three-dimensional proofnets

    Principles of Superdeduction

    Get PDF
    International audienceIn predicate logic, the proof that a theorem P holds in a theory Th is typically conducted in natural deduction or in the sequent calculus using all the information contained in the theory in a uniform way. Introduced ten years ago, Deduction modulo allows us to make use of the computational part of the theory Th for true computations modulo which deductions are performed. Focussing on the sequent calculus, this paper presents and studies the dual concept where the theory is used to enrich the deduction system with new deduction rules in a systematic, correct and complete way. We call such a new deduction system "superdeduction''. We introduce a proof-term language and a cut-elimination procedure both based on Christian Urban's work on classical sequent calculus. Strong normalisation is proven under appropriate and natural hypothesis, therefore ensuring the consistency of the embedded theory and of the deduction system. The proofs obtained in such a new system are much closer to the human intuition and practice. We consequently show how superdeduction along with deduction modulo can be used to ground the formal foundations of new extendible proof assistants. We finally present lemuridae, our current implementation of superdeduction modulo

    Continuation-Passing Style and Strong Normalisation for Intuitionistic Sequent Calculi

    Full text link
    The intuitionistic fragment of the call-by-name version of Curien and Herbelin's \lambda\_mu\_{\~mu}-calculus is isolated and proved strongly normalising by means of an embedding into the simply-typed lambda-calculus. Our embedding is a continuation-and-garbage-passing style translation, the inspiring idea coming from Ikeda and Nakazawa's translation of Parigot's \lambda\_mu-calculus. The embedding strictly simulates reductions while usual continuation-passing-style transformations erase permutative reduction steps. For our intuitionistic sequent calculus, we even only need "units of garbage" to be passed. We apply the same method to other calculi, namely successive extensions of the simply-typed λ-calculus leading to our intuitionistic system, and already for the simplest extension we consider (λ-calculus with generalised application), this yields the first proof of strong normalisation through a reduction-preserving embedding. The results obtained extend to second and higher-order calculi
    corecore