
Computational interpretation of classical logic with

explicit structural rules

Silvia Ghilezan, Pierre Lescanne, Dragisa Zunic

To cite this version:

Silvia Ghilezan, Pierre Lescanne, Dragisa Zunic. Computational interpretation of classical logic
with explicit structural rules. 2012. <ensl-00681296>

HAL Id: ensl-00681296

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00681296

Submitted on 21 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00681296

Computational interpretation of classical logic

with explicit structural rules

S. Ghilezana, P. Lescanneb, D. Žunićc

aUniversity of Novi Sad, Faculty of Technical Sciences, Serbia
bUniversity of Lyon, École Normal Supérieure de Lyon, France

cFaculty of Economics and Engineering Management, Novi Sad, Serbia

Abstract

We present a calculus providing a Curry-Howard correspondence to classical
logic represented in the sequent calculus with explicit structural rules, namely
weakening and contraction. These structural rules introduce explicit erasure
and duplication of terms, respectively. We present a type system for which we
prove the type-preservation under reduction. A mutual relation with classical
calculus featuring implicit structural rules has been studied in detail. From
this analysis we derive strong normalisation property.

Keywords: classical logic, Curry-Howard correspondence, lambda calculus,
resource control, erasure and duplication

Introduction

The fundamental connection between logic and computation, known as
the Curry-Howard correspondence or formulae-as-types, proofs-as-term and
proofs-as-programs paradigm, relates logical and computational systems.

Gentzen’s natural deduction is a well established formalism for express-
ing proofs. Church’s simply typed λ-calculus is a core formalism for writing
programs. Simply typed λ-calculus represents a computational interpretation
of intuitionistic natural deduction: formulae correspond to types, proofs to
terms/programs and simplifying a proof corresponds to executing a program.
In its traditional form, terms in the λ-calculus encode proofs in intuitionis-
tic natural deduction; from another perspective the proofs serve as typing

Email addresses: gsilvia@uns.ac.rs (S. Ghilezan),
pierre.lescanne@ens-lyon.fr (P. Lescanne), dragisa.zunic@gmail.com (D. Žunić)

Preprint submitted to Theoretical Computer Science March 21, 2012

derivations for the terms. This correspondence was discovered in the late
1950s and early 1960s independently in logic by Curry, later formulated by
Howard; in category theory, Cartesian Closed Categories, by Lambek; and
in mechanization of mathematics, the language Automath, by de Brujin.

Griffin extended the Curry-Howard correspondence to classical logic in
his seminal 1990 paper [19], by observing that classical tautologies suggest
typings for certain control operators. This initiated a vigorous line of re-
search: on the one hand classical calculi can be seen as pure programming
languages with explicit representations of control, while at the same time
terms can be tools for extracting the constructive content of classical proofs.
The λµ-calculus of Parigot [31] expresses the computational content of clas-
sical natural deduction and has been the basis of a number of investigations
into the relationship between classical logic and theories of control in pro-
gramming languages.

Computational interpretation of sequent-style logical systems has come
into the picture much later, by the end of 1990s. There were several at-
tempts, over the years, to design a term calculus which would embody the
Curry-Howard correspondence for intuitionistic sequent logic. The first cal-
culus accomplishing this task is Herbelin’s λ̄-calculus [20]. Recent interest in
the Curry-Howard correspondence for intuitinistic sequent logic [20, 5, 13, 14]
made it clear that the computational content of sequent derivations and cut-
elimination can be expressed through an extension of the λ-calculus. In
the classical setting, there are several term calculi based on classical sequent
logic, in which terms unambiguously encode sequent derivations and reduc-
tion corresponds to cut elimination: Barbanera and Berardi’s Symmetric Cal-
culus [3], Curien-Herbelin’s λµµ̃-calculus [7], Urban-Bierman’s calculus [37],
Wadler’s Dual Calculus [45]. In contrast to natural deduction proof systems,
sequent calculi exhibit inherent symmetries in proof structures which cre-
ate technical difficulties in analyzing the reduction properties of these calculi
[12, 11, 16].

The tutorial entitled “Computational interpretations of logics” given by
the first author of this paper at ICTAC 2011 in Johannesburg, South Africa,
presented a comprehensive overview and a comparison of computational in-
terpretations of intuitionistic and classical logic both in natural deduction
and sequent-style setting. In this paper our focus is on the computational
interpretations of classical sequent calculus, with explicit structural rules of
weakening and contraction.

∗X has been designed to provide a correspondence ‘a là’ Curry-Howard for

2

the standard formulation of classical sequent calculus, with explicit structural
rules (weakening and contraction). The direct correspondence between proofs
and terms is achieved by using the technique of labeling formulas by names.
These names are used to build terms so that the structure of a term captures
the original structure of a corresponding proof. Furthermore, the computa-
tion of terms is defined in a way that mirrors the proof-transformation, that
is, the cut-elimination.

The inspiration for ∗X comes from two sources. On the one hand, the
direct predecessor is the classical term language called X . On the other
hand, a very strong influence comes from the intuitionistic field and most
notably the work on the λlxr-calculus.

X λlxr

∗X

In our study we try to respect the underlying principles of these works, and
implement them in a way that preserves their good properties.

As a first contribution of this paper, we design ∗X , which represents the
computational interpretation of classical sequent logic with explicit structural
rules of contraction and weakening. Further, we propose a simply typed
system for which we prove the witness reduction property. We relate the
explicit and implicit treatment of structural rules by mutual encoding of ∗X
and X . Finally, these results leads us to prove strong normalisation of simply
typed ∗X .

Related work. The X calculus is a term language, introduced in [42] and
studied in more detail in [43]. It is a low level language which can easily
encode various other calculi and which captures the structure of classical
proofs represented in the sequent calculus, espcially cut-elimination. Some
of its properties are non-determinism, non-confluence and strong normaliza-
tionfor typed terms.

Some closely related computational interpretations have been presented
earlier. First of them is the so-called local cut-elimination procedure pre-
sented in [38]. It is one of the three cut-elimination procedures studied in
detail in [35]. A term assignment is given for proofs in the classical sequent

3

calculus (formulated with completely implicit structural rules). Then this
term language was used as a tool to show the properties of classical sequent
calculus. Most importantly, it enabled the authors to use the term-rewriting
techniques in order to prove the strong normalization of cut-elimination in
classical logic.

A second computational interpretation, very close to X , has been pre-
sented by Lengrand in [28], under the name λξ-calculus. There it was stud-
ied in relation with λ̄µµ̃-calculus of [7], and it was used to infer the strong
normalization for λ̄µµ̃.

Although there are differences these three formulations are very close.
The syntaxes of λξ and X are the same (there are minor differences such as
the use of †v in the first, instead of † in the second). Both the syntax and the
reduction rules of λξ are said to be (in [28]) the subsystems of Urban’s local

cut-elimination procedure (T ↔,
loc−→) (see [35]). However, some differences in

the set of reductions exist.
Let us recall here the philosophy behind these calculi. Urban [35] was

partly inspired by Danos et al. [9] who consider Gentzen’s sequent calculus
as a programming language. Their cut-elimination procedure is called LKtq.
It is strong normalizing, confluent and strongly connected to linear logic
proof nets. Confluence is obtained by assigning color annotations to formu-
las, which restricts cut-reductions so that the critical pair does not arise.
Confluence is essential in LKtq because it enabled the authors to exploit the
strong normalization result of proof nets in linear logic. However Urban re-
veals all the details of the complex classical cut-elimination, by developing a
term-notation for proofs, whereas in LKtq concepts are presented informally.

Moreover, it has been shown in [35, 39], using the results of [4], that not
all normal forms are reachable using the LKtq interpretation. Secondly, the
restrictions introduced by using the colors are not needed to ensure strong
normalization.
X departs from the traditional doctrine of intuitionistic logic, where com-

putation is an equality preserving operation on proofs. Instead, X accepts
that cut-elimination may or may not preserve proof equality, and that non-
determinism is a natural feature of classical logic.

Although mainly concerned with the computational content of classical
logic, the ideas presented in this paper come partly from intuitionistic logic,
primarily from the λlxr-calculus [22, 23] which had a significant influence.
The λlxr-calculus extends λx [6, 32] by operators for erasure and duplication

4

in the same way as ∗X extends X . The intuitionistic calculi, λx and λlxr are
related as are X and ∗X .

The λlxr-calculus was created as an attempt to relate the two elementary
decompositions, namely, the decomposition of intuitionistic connectives in
linear logic, and the decomposition of a meta-level λ-calculus substitution.
The meta-substitution can be decomposed into more atomic steps, repre-
sented within the language [1], thus bringing the theoretical work closer to
the actual implementations. It has been shown in [22] that there exists a
very strong relation between λlxr-calculus and linear logic proof-nets.

Some works have considered the relation between X and the π-calculus.
The π-calculus, [30, 33], is able to describe concurrent computations, in-
cluding the communication between processes. The configurations of the
interacting processes may change during the computation. The relation of X
and π-calculus has been recently presented in [41], where the X calculus is
encoded into π. This paper seeks for the intuition to what is computational
meaning of cut-elimination from the point of view of π.

Some remarks aiming at essential points related to concurrency were given
earlier by Urban [35]. He suggested how a form of weak communication can
be implemented, using quantifiers, into the classical sequent calculus. Besides
that, it was noted that the approach where reduction is not seen as an equality
preserving operation, is a standard approach in the calculi of concurrency.
Moreover, the substitution mechanism in X -like calculi in which only names
may participate, is closer to the π-calculus than the substitution mechanism
defined in the λ-calculus which involves terms.

Outline of the paper. Section 1 is a brief overview of the sequent style classical
logical systems. Section 2 deals with X calculus: its syntax, reduction rules,
types systems and basic properties. In Section 3 we propose the syntax and
operational semantics of ∗X as well as the simply typed system. Section 4
provides the relation between the two calculi.

Contents

1 Sequent calculi G1 and G3 6

2 The X calculus 8
2.1 The syntax . 8
2.2 The computation . 9

5

2.3 The type system . 11
2.4 Basic properties . 12

3 Erasure and duplication: the ∗X calculus 12
3.1 The syntax . 12
3.2 Reduction rules . 19
3.3 Operational properties . 26
3.4 The type assignment system 27

4 Explicit vs. implicit: relation between ∗X and X 29
4.1 From X to ∗X . 30
4.2 From ∗X to X . 37
4.3 Strong normalisation of ∗X . 41

5 Conclusions 42

1. Sequent calculi G1 and G3

The basic Genzen systems for classical and intuitionistic logic denoted as
G1, G2 and G3 are formalized in [26] and later revisited in [34]. In brief, the
essential difference between G1 and G3 is the presence or absence of explicit
structural rules. The distinguishing point in the case of G2 is the use of the
so-called mix instead of a cut rule. Although here we focus on the classical
systems, we remark that the intuitionistic systems are obtained from classical
ones by restricting sequents to having only one formula in the succedent.

The system G1. Among the three systems presented by Kleene [26], G1 is the
closest to Gentzen’s original formulation [15]. Despite the fact that Gentzen
and Kleene present explicitly exchange rules, which is not the case here, we
keep the name G1 (Figure 1). Latin symbols A,B, ... are used to denote for-
mulas and Greek symbols Γ,∆,Γ′,∆′, ... to denote contexts, which are in this
framework multisets of formulas. Exchange rules are handled by multisets
instead of lists, whereas the other structural rules, namely weakening and
contraction are explicitly given. The axiom rules do not involve arbitrary
contexts. Inference rules with two premises, namely (L →) and (cut), are
given in the context-splitting style, which means that when looking bottom-
up the contexts of a conclusion is split by premises. It has been shown in [34]
that if a context-sharing style was applied one obtains an equivalent system,
i. e., a system that proves the same sequents.

6

(ax)
A ` A

Γ ` A,∆ Γ′, B ` ∆′

(L→)
Γ,Γ′, A→ B ` ∆,∆′

Γ, A ` B,∆
(R→)

Γ ` A→ B,∆

Γ ` A,∆ Γ′, A ` ∆′

(cut)
Γ,Γ′ ` ∆,∆′

Γ ` ∆
(weak-L)

Γ, A ` ∆

Γ ` ∆
(weak-R)

Γ ` A,∆

Γ, A,A ` ∆
(cont-L)

Γ, A ` ∆

Γ ` A,A,∆
(cont-R)

Γ ` A,∆

Figure 1: Sequent system G1

The system G3. The sequent system G3 is obtained from G1 by making
all structural rules parts of the remaining rules with appropriate forms. In
other words, there is no explicit structural rules. Instead structural rules are
hidden in the new presentation of the logical rules and of the cut-rule, and
thus performed automatically.

This system has been mentioned as G3a in [26] and formalized as classical
G3 in [34]. It is presented by Figure 2, where A,B, ... range over formulas,
while contexts Γ,∆, ... are finite sets of formulas.

(ax)
Γ, A ` A,∆

Γ ` A,∆ Γ, B ` ∆
(L→)

Γ, A→ B ` ∆

Γ, A ` B,∆
(R→)

Γ ` A→ B,∆

Γ ` A,∆ Γ, A ` ∆
(cut)

Γ ` ∆

Figure 2: Sequent system G3

7

Inference rules with two premises are given in the context-sharing style. The
definition of the axiom rule involves contexts, thus allowing arbitrary formu-
las to be introduced at that level, i.e., weakening rule is hidden in the form
of the axiom.

2. The X calculus

This section presents X which is, together with λlxr, a predecessor of ∗X .
The design of ∗X has been directly inspired by X .
X was first presented in van Bakel, Lescanne and Lengrand in [42]. The

origin of the language is in the notations for classical sequent proofs by
Urban [35], introduced as a tool to express the cut-elimination procedure as a
term rewriting system, which later allowed him to prove strong normalization
of cut-elimination. A close variant of the language has been studied by
Lengrand in relation with the λ̄µµ̃-calculus, in a calculus he called λξ [28].

It is argued in [35] that non-determinism, although it leads to non-
confluence, should be considered as an intrinsic property of classical logic.
This point of view was taken in some earlier works, for example [3, 20, 4]
and more recently in [17, 21]. This means that, in classical logic, we de-
part from the traditional intuitionistic (and linear) logic doctrine, where cut-
elimination is an equality preserving operation on proofs.

2.1. The syntax

The X calculus corresponds to a sequent system with implicit structural
rules (Figure 2. Since we consider only the implicative fragment, the only
inference rules are axiom, cut, left-arrow introduction and right-arrow intro-
duction. Therefore, in the X calculus there are four constructors (see Figure
3).

P,Q ::= 〈x.α〉 capsule

| x̂ P β̂ . α exporter

| P α̂ [x] ŷ Q importer

| Pα̂ † x̂Q cut

Figure 3: The syntax of X

The term capsule corresponds to an axiom rule, cut corresponds to a
cut-rule, importer corresponds to left-arrow introduction rule and exporter

8

corresponds to right-arrow introduction rule.1 The syntax is then extended
by two active cuts that reflect the non-deterministic choice which exists in
the sequent calculus.

P,Q ::= · · ·
| Pα̂ † x̂Q left-active cut
| Pα̂ † x̂Q right-active cut

2.2. The computation

There are 20 reduction rules in X which correspond to cut-elimination in
the sequent calculus and which are split into logical, activation and propa-
gation clusters and not grouped like [42, 43]. There are named to ease the
comparison with ∗X -rules.

Logical rules

Logical rules say how to eliminate a cut. They apply when the cut refers
to two names which are freshly introduced.

Definition 1 (Fresh introduction).

• The term P freshly introduces x if P = 〈x.α〉 or P = Q α̂ [x] ŷ R,
with x /∈ N(Q), x /∈ N(R).

• The term P freshly introduces α if P = 〈x.α〉 or P = x̂ Q β̂ . α,
with α /∈ N(Q).

Informally, names are freshly introducesd if they appear once and only
once, at the top level of their corresponding terms.2 The cut in this position
can not be activated. Logical rules are shown by Figure 4.
The first two rules are renaming. The last rule, called insertion, defines an
interaction between an importer and an exporter. It inserts an immediate
subterm of an exporter between two immediate subterms of an importer.

1In the original papers importer and exporter were called import and mediator.
2This is more complex than in ∗X , where the linearity condition guarantees that if a

name occurs at the top level, then it does not occur elsewhere.

9

(ren-R) : Pα̂ † x̂〈x.β〉 → P{β/α}

(ren-L) : 〈y.α〉α̂ † x̂Q → Q{y/x}

(ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP)β̂ † ẑR
Qγ̂ † ŷ(P β̂ † ẑR)

α /∈ N(P), x /∈ N(Q), x /∈ N(R)

Figure 4: Logical rules in X

Activation rules

Activation rules describe the non-determinism of classical cut-elimination.
If a cut refers to a name which is not freshly introduced, one has to propagate
it according to a chosen direction and activation is then followed by prop-
agation rules (see Figures 6 and 7). This choice has usually been bypassed
in the previous interpretations, either by restricting the reduction procedure
(a very common one is to not allow cuts to pass over other active cuts), or
by giving priority to a specific strategy (like in [8], by assigning colors to
formulas). Notice that the cut can be activated in one or the other direction
when both conditions are fulfilled at the same time, as shown by Figure 5.
This is a source of non-confluence.

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q, if α not freshly introduced by P

(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q, if x not freshly introduced by Q

Figure 5: Activation rules in X

Propagation rules

Left and right propagation rules are given in Figures 6 and 7, respectively.
These rules describe how a cut is pushed through a term, but also address
situations where deactivation, erasure and duplication occur. This means
that in X , several actions can be defined by a single reduction rule. Take for
example the rule from Figure 7 which involves propagation, duplication and
deactivation:

(† -prop-dupl-deact) :

10

Pα̂ † x̂(Q β̂ [x] ẑ R)→ Pα̂ † x̂((Pα̂ † x̂Q) β̂ [x] ẑ (Pα̂ † x̂R))

The rule labelled († -(c)-prop-deact) describes a subtle propagation over
a capsule whose both names are bound by cuts (nested cuts with an axiom).
This rule is introduced to prevent possible infinite reductions of syntactic
nature [9, 35]. Rules († -gc) and († -gc) collect garbage.

(† -eras) : 〈x.α〉β̂ † ŷR → 〈x.α〉, α 6= β

(† -deact) : 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR

(† -prop) : (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β

(† -prop-dupl-deact) : (x̂ P γ̂ . β)β̂ † ŷR → (x̂ (P β̂ † ŷR) γ̂ . β)β̂ † ŷR

(† -prop-dupl1) : (P α̂ [x] ẑ Q)β̂ † ŷR → (P β̂ † ŷR) α̂ [x] ẑ (Qβ̂ † ŷR)

(† -(c)-prop-deact) : (Pα̂ † x̂〈x.β〉)β̂ † ŷR → (P β̂ † ŷR)α̂ † ŷR

(† -prop-dupl2) : (Pα̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂(Qβ̂ † ŷR), Q 6= 〈x.β〉

(† -gc) : Pα̂ † x̂Q → P, if α /∈ N(P)

Figure 6: Left propagation (erasure/duplication/deactivation) in X

(† -eras) : Pα̂ † x̂〈y.β〉 → 〈y.β〉, x 6= y

(† -deact) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉

(† -prop) : Pα̂ † x̂(ŷ Q γ̂ . β) → ŷ (Pα̂ † x̂Q) γ̂ . β

(† -prop-dupl1) : Pα̂ † x̂(Q β̂ [y] ẑ R) → (Pα̂ † x̂Q) β̂ [y] ẑ (Pα̂ † x̂R), x 6= y

(† -prop-dupl-deact) : Pα̂ † x̂(Q β̂ [x] ẑ R) → Pα̂ † x̂((Pα̂ † x̂Q) β̂ [x] ẑ (Pα̂ † x̂R))

(† -(c)-prop-deact) : Pα̂ † x̂(〈x.β〉β̂ † ŷR) → Pα̂ † ŷ(Pα̂ † x̂R)

(† -prop-dupl2) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R), Q 6= 〈x.β〉

(† -gc) : Pα̂ † x̂Q → Q, if x /∈ N(Q)

Figure 7: Right propagation (erasure/duplication/deactivation) in X

2.3. The type system

The type assignment system for the X calculus is given by Figure 8.

11

(axiom)
〈x.α〉 ··· Γ, x : A ` α : A,∆

P ··· Γ ` α : A,∆ Q ··· Γ, x : B ` ∆
(→L)

P α̂ [y] x̂ Q ··· Γ, y : A→ B ` ∆

P ··· Γ, x : A ` α : B,∆
(→R)

x̂ P α̂ . β ··· Γ ` β : A→ B,∆

P ··· Γ ` α : A,∆ Q ··· Γ, x : A ` ∆
(cut)

Pα̂ † x̂Q ··· Γ ` ∆

Figure 8: X type system

2.4. Basic properties

It has been shown in [39] that the computation in X calculus can be seen
as proof-transformation (subject reduction property) and that X , although
intrinsically non-deterministic and non confluent, which are indeed properties
of classical cut-elimination, is strongly normalising.

3. Erasure and duplication: the ∗X calculus

This section presents the rules of untyped ∗X , followed by the basic oper-
ational properties and the definition of typing rules. Although it is presented
here as a counterpart of the implicative segment of the sequent calculus for
classical logic, the system can naturally be extended to encompass other
connectives as well [44].

3.1. The syntax

Names differ essentially from variables in λ-calculus. The difference lies
in the fact that a variable can be substituted by an arbitrary term, while
a name can only be renamed (that is, substituted by another name). In
∗X the renaming is explicit, which means that it is expressed within the
language itself and is not defined in the meta-theory. The reader will notice
the presence of hats on some names. This notation has been borrowed from
Principia Mathematica [46] and is used to denote name binding.

12

Free names, bound names and ∗X -terms

Names can be free or bound. They are defined together with the set of
∗X -terms also called linear terms.

Linearity In ∗X , we consider only linear terms, which means:
– Every name has at most one free occurrence, and
– Every binder does bind an actual occurrence of a name (and thus only one)

Definition 2 (Free Names and ∗X - terms). The sets of free innames and
free outnames and the set of (well-formed) ∗X -terms are defined mutually re-
cursively in Figure 9 and Figure 10.

By “mutually recursive” we mean that the definition of an ∗X -term needs
the definition of the free names of its subterms and the definition of the
free names supposes that the structure of the subterms is known. We write
N(P) the set of free names of P , I(P) the sets of free innames of P , and
O(P) the set of free outnames of P . Thus N(P) = I(P) ∪ O(P). A name
which occurs in P and which is not free is called a bound name. Notice that
a construction can bind two names. This can be either two innames, two
outnames or an inname and an outname. Moreover, these names sometimes
belong to different subterms, as in the case of an importer or a cut. To denote
the binding of all names in one list, we use simply Î, Ô. It is sometimes
needed to use I(P) instead of IP , and similarly for outnames O(P), and
names in general N(P). The bar is used to denote that we see the given set
of names as a list, according to the total order which can be defined for the
set of names. To exclude a name from a list, for instance, outname α, we
write OP\α.

Renaming We define the operation P{x/y} which denotes the renaming of
a free name y in P by a fresh name x. It is a meta-operation which replaces a
unique occurrence of a free name by another free name. Therefore it is simpler
than the meta-substitution of λ-calculus, which denotes the substitution of
a free variable (which can occur arbitrary number of times) by an arbitrary
term.

Indexing We introduce a special kind of renaming, called indexing, in order
to simplify the syntax of the reduction rules. For example Pi = ind(P,N(P), i)
means that Pi is obtained by indexing free names in P by index i, where
i ∈ N . Simple notation Pi for cases such as this one will be used when

13

x ∈ I(〈x.α〉) α ∈ O(〈x.α〉)

y ∈ I(P) y 6= x

y ∈ I(x̂ P β̂ . α) α ∈ O(x̂ P β̂ . α)

γ ∈ O(P) γ 6= β

γ ∈ O(x̂ P β̂ . α)

x ∈ I(P α̂ [x] ŷ Q)

z ∈ I(P)

z ∈ I(P α̂ [x] ŷ Q)

z ∈ I(Q) z 6= y

z ∈ I(P α̂ [x] ŷ Q)

β ∈ O(P) β 6= α

β ∈ O(P α̂ [x] ŷ Q)

β ∈ O(Q)

β ∈ O(P α̂ [x] ŷ Q)

y ∈ I(P)

y ∈ I(Pα̂ † x̂Q)

y ∈ I(Q) y 6= x

y ∈ I(Pα̂ † x̂Q)

β ∈ O(P)β 6= α

β ∈ O(Pα̂ † x̂Q)

β ∈ O(Q)

β ∈ O(Pα̂ † x̂Q)

x ∈ I(x� P)

y ∈ I(P)

y ∈ I(x� P)

α ∈ O(P)

α ∈ O(x� P)

x ∈ I(P)

x ∈ I(P � α) α ∈ O(P � α)

β ∈ O(P)

β ∈ O(P � α)

x ∈ I(x< x̂1
x̂2
〈P])

y ∈ I(P) y 6= x1 y 6= x2

y ∈ I(x< x̂1x̂2〈P])

α ∈ I([P 〉α̂1
α̂2

>α)

β ∈ I(P) β 6= α1 β 6= α2

β ∈ I([P 〉α̂1
α̂2

>α)

Figure 9: Free names in ∗X

possible. We assume that indexing always creates fresh names. As we use it
indexing preserves linearity.

Modules A module is a part of a term (not a subterm) of the form α̂ † x̂Q
(left-module) and Pβ̂ † ŷ (right-module) which percolates through the struc-
ture of that term (and its subterms) during the computation, as specified by
the so-called “propagation rules”. It resembles the explicit substitution. We
say that α and y are the handles of α̂ † x̂Q and Pβ̂ † ŷ, respectively. Two
modules are independent if the handle of one module does not bind a free

14

〈x.α〉 wf ∗X -term

P wf ∗X -term, x, β ∈ N(P), α /∈ N(P)

x̂ P β̂ . α wf ∗X -term

P,Q wf ∗X -term, α ∈ N(P), x ∈ N(Q), y /∈ N(P,Q), N(P) ∩N(Q) = ∅

P α̂ [y] x̂ Q wf ∗X -term

P,Q wf ∗X -term, α ∈ N(P), x ∈ N(Q), N(P) ∩N(Q) = ∅

Pα̂ † x̂Q wf ∗X -term

P wf ∗X -term, x /∈ N(P)

x� P wf ∗X -term

P wf ∗X -term, α /∈ N(P)

P � α wf ∗X -term

P wf ∗X -term, x, y ∈ N(P), z /∈ N(P)

z< x̂
ŷ〈P] wf ∗X -term

P wf ∗X -term, α, β ∈ N(P), γ /∈ N(P)

[P 〉α̂β̂ >γ wf ∗X -term

Figure 10: ∗X terms

name inside the other module, and vice-versa, as follows:

independent modules conditions

α̂ † x̂Q, β̂ † ŷR α /∈ N(R), β /∈ N(Q)

Pα̂ † x̂, Qβ̂ † ŷ x /∈ N(Q), y /∈ N(P)

Pα̂ † x̂, β̂ † ŷR x /∈ N(R), β /∈ N(P)

Convention on names We adopt a convention on names: “a name is
never both bound and free in the same term”. Terms are defined up to
α-conversion, that is, the renaming of bound names does not change them.

Every X -term can be translated into an ∗X -term, using duplicators and
erasers. For instance, 〈x.α〉 � α, which has two free occurrences of α, can

be represented in ∗X by the term [〈x.α1〉 � α2〉â1α̂2
>α (notice the role of a

duplicator). The term x̂ 〈x.α〉 β̂ . γ binds no free name and corresponds to

the ∗X -term x̂ (〈x.α〉 � β) β̂ . γ (notice the role of an eraser).

15

Definition 3 (Principal names). The following tables define te so-called prin-
cipal names.

a term L-princip. names

〈x.α〉 x, α

x̂ P β̂ . α α

P α̂ [x] ŷ Q x

P α̂ † x̂Q none

a term S-princip. names

x� P x

P � α α

x< x̂1

x̂2
〈P] x

[P 〉α̂1

α̂2
>α α

We say that a name is principal if it is either L-principal (introduced by
a logical term) or S-principal (introduced by a structural term).

Lemma 4. Every term has at least a free logical outname.

Proof:. The proof goes by routine induction on the structure of terms.3 �.

Definition 5 (Contexts). Contexts are formally defined as follows:

C{ } ::= { } | x̂ { } β̂ . α
| { } α̂ [x] ŷ Q | P α̂ [x] ŷ { }
| { }α̂ † x̂Q | Pα̂ † x̂{ }
| x� { } | { } � α
| z< x̂

ŷ〈{ }] | [{ }〉α̂β̂ >γ
| C{C{ }}

Remark 6. A context is a term with a hole in which another term can be
placed. Therefore C{P} denotes placing the term P in the context C{ }.

Remark 7. We use P = Q to denote that the terms P and Q are syntacti-
cally equal.

Definition 8 (Subterm relation 4). A term Q is a subterm of a term P ,
denoted as Q 4 P if there is a context C{ } such that P = C{Q}.

3This would no longer be true if we were to extend the system with negation, for details
see [44].

16

Lemma 9. The subterm relation is reflexive, antisymmetric and transitive
(i.e., is an order):

1. Reflexivity P 4 P

2. Antisymmetry If P 4 Q and Q 4 P then P = Q

3. Transitivity: If P 4 Q and Q 4 R then P 4 R

Proof:.

1. The first point is straightforward. If P 4 P , then by the subterm
definition we have ∃ C{ } such that P = C{P}. This stands if we
choose C{ } to be { }.

2. Let P 4 Q and Q 4 R. By definition ∃ C ′{ }, C ′′{ } such that
C ′{P} = Q and C ′′{Q} = P . From C ′{C ′′{Q}} = Q we derive C ′{ } =
C ′′{ } = { }. Finally we can conclude P = Q.

3. On the one hand, from P 4 Q by definition we have: ∃ C ′{ } such that
C ′{P} = Q. On the other hand, from Q 4 R by definition we have:
∃ C ′′{ } such that C ′′{Q} = R. Thus, C ′′{C ′{P}} = R and therefore
by definition we have P 4 R. �

The following definition introduces the notion of a simple context, i.e., a
context which is not composed of other contexts. Notice that it resembles
the definition of context, except that the cases { } and C{C{ }} are omitted.

Definition 10 (Simple context). A context C{ } is said to be simple if
C{ } is one of the following:

C{ } := x̂ { } β̂ . α |
| { } α̂ [x] ŷ Q | P α̂ [x] ŷ { }
| { }α̂ † x̂Q | Pα̂ † x̂{ }
| x� { } | { } � α
| z< x̂

ŷ〈{ }] | [{ }〉α̂β̂ >γ

Using the definition of a simple context we formulate the notion of immediate
subterm.

Definition 11 (Immediate subterm). A term Q is an immediate subterm
of P if P = C{Q} and C{ } is a simple context.

17

Example 12. A term can have either one, two, or zero immediate subterms.
For example, Q α̂ [x] ŷ R has two immediate subterms (these are P and Q),

x̂ Q β̂ . α has one (a term P), whilst 〈x.α〉 has zero immediate subterms.

Using the definition of a context C{ }, we specify the notion of a context
with two holes.

Definition 13 (Context with two holes).

C{ , } ::= { } α̂ [x] ŷ { } | { }α̂ † x̂{ }
| C{C{ }, C{ }} | C{C{ , }}

Definition 14 (Simple context with two holes).

C{ , } ::= { } α̂ [x] ŷ { } | { }α̂ † x̂{ }

Using this definition, the notion of immediate subterm can be naturally ex-
tended as to encompass the cases when we speak about two immediate sub-
terms.

Remark 15. We allow the use of of P = Pα{R}to denote that the term
P has α as principal name and R as an immediate subterm. Similarly for
P = P x{R1, R2}

Lemma 16. The following holds:

1. If α ∈ N(P) then there exists a unique term Q 4 P such that α is a
principal name for Q.

2. If x ∈ N(P) then there exists a unique term R 4 P such that x is a
principal name for R.

Remark 17. We will use the notation Qα to specify that Q has α as a
principal name. Similarly, we use Rx to emphasize that R has x as a principal
name.

18

Proof:. We prove the first point. The proof goes by induction on the structure
of a term P and case analysis.

Let α ∈ P .

• Case: α is a principal name for P . Then Q = P .

• Case: α is not a principal name for P . Then, either P = C{R} or
P = C{R1, R2}, where R,R1 and R2 denote immediate subterms of P .

– P = C{R}. By induction hypothesis, and since by linearity α ∈
R, we have: ∃Q 4 R such that α is a principal name for Q. By
using transitivity (lemma 9), from Q 4 R and R 4 P we infer
Q 4 P .

– P = C{R1, R2}. By the linearity condition we know that α be-
longs to either N(R1) or N(R2) (not to both). Thus we have two
subcases, which correspond to the previous case. In the first case
C{R1, R2} is seen as C ′{R1}, where C ′{ } = C{{ }, R2}, and in
the second case as C ′′{R2}, where C ′′{ } = C{R1, { }}. Recall
that R1, R2 are immediate subterms of P by definition.

The second point of the lemma refers to innames instead of outnames, and
the proof goes similarly. �

Abbreviations. We introduce some abbreviations in order to represent re-
duction rules in a convenient form.

instead of we write
x1�(...(xn � P)...) x1 � ...xn � P
(...(P � α1) ...)�αn P � α1 ...� αn

instead of we write

x1<
ŷ1
ẑ1
〈...xn< ŷnẑn〈P]...] (x1, ..., xn)<

(ŷ1,...,ŷn)
(ẑ1,...,ẑn)〈P]

[...[P 〉β̂1
γ̂1
>α1...〉β̂nγ̂n >αn [P 〉(β̂1,...,β̂n)

(γ̂1,...,γ̂n)
>(α1, ..., αn)

3.2. Reduction rules
In this section we define the reduction relation, →. The set of reduction

rules is rather large as it captures classical cut-elimination.
Reduction rules are grouped into

1. Activation rules (left and right)

2. Structural actions (left and right)

3. Deactivation rules (left and right)

4. Logical actions

5. Propagation rules (left and right)

19

Congruence rules. We assume some simple congruence rules which originate
from the sequent calculus.
Commuting names in a duplicator Permuting independent duplicators

x< x̂1
x̂2
〈P] ≡ x< x̂2

x̂1
〈P]

[P 〉α̂1
α̂2

>α ≡ [P 〉α̂2
α̂1

>α

x< x̂1
x̂2
〈y< ŷ1

ŷ2
〈P]] ≡ y< ŷ1

ŷ2
〈x< x̂1

x̂2
〈P]]

[[P 〉α̂1
α̂2

>α〉β̂1β̂2 >β ≡ [[P 〉β̂1β̂2 >β〉
α̂1
α̂2

>α

[x< x̂1
x̂2
〈P]〉α̂1

α̂2
>α ≡ x< x̂1

x̂2
〈[P 〉α̂1

α̂2
>α]

The conditions in the first rule treating the duplicators are y /∈ {x1, x2} and
x /∈ {y1, y2} and in the second β /∈ {α1, α2} and α /∈ {β1, β2}. The third rule
allows us to drop parenthesis and use a simplified notation

x < x̂1
x̂2
〈P 〉α̂1

α̂2
>α and more generally I < Î1Î2〈P 〉

Ô1

Ô2
>O

where I and O are lists of names. When I = (), we write [P 〉Ô1

Ô2
>O. The

case O = () is not possible as stated by Lemma 4.
When the names are triplicated, one can do it in any order:

z< ŷ
x̂3
〈y< x̂1

x̂2
〈P]] ≡ z< x̂1

ŷ 〈y<
x̂2
x̂3
〈P]]

[[P 〉α̂1
α̂2

>β〉 β̂α̂3
>γ ≡ [[P 〉α̂2

α̂3
>β〉α̂1

β̂ >γ

This can be seen as an associativity of names bound by a ternary duplicator.
Permuting the erasers: The following rule suggests that we may drop paren-
thesis and write x � P � α, and more generally we may write: I �P �O.

y � x� P ≡ x� y � P
P � α� β ≡ P � β � α

(x� P)� α ≡ x� (P � α)

We now present the reduction rules of ∗X calculus.

1. Activation rules

Activation rules hold the non-determinism of classical cut-elimination.
More precisely, during the process of cut-elimination sometimes we have to
choose the left or the right subtree to push the cut through. This choice is
captured by the activation rules, which require to extend the syntax with
new symbols called active cuts.

20

Definition 18 (Active Cuts). The syntax is extended with two active cuts :

P,Q ::= . . . | Pα̂ † x̂Q | Pα̂ † x̂Q

Activation rules are a potential source of non-confluence, an intrinsic
property of classical logic, as illustrated by Example 19.

Example 19. Terms Pα̂ † x̂Q and Pα̂ † x̂Q are essentially different. This
becomes obvious in the example where both α and x are introduced by
erasers. Take

P = M � α and Q = x�N,

where M and N are arbitrary terms. Then we have:

(M � α)α̂ † x̂(x�N) → IN\x �M �ON
(M � α)α̂ † x̂(x�N) → IM �N �OM\α

This simple example is reminiscent of that of Lafont [18].

Remark 20. By constantly giving priority to either left or right activation,
we may remove the non-confluence from the calculus and thus obtain two
confluent subcalculi. In the case of λ̄µµ̃-calculus, if one gives priority to one
of two sides, then one obtains a call-by-name or a call-by-value calculus. In
accordance to what was noted for X in [36] - that this doesn’t hold for X ,
we suspect that it does not hold for ∗X either.

2. Structural actions

Structural actions consist of four reduction rules, specifying erasure and
duplication by referring to the situation when an active cut faces an eraser
or a duplicator. Structural actions are given in Figure 11. These compu-
tational features were studied extensively in the framework of intuitionistic
logic [10],[23].

Structural rules specifying duplication employ the so-called simultane-
ous substitutions. Informally, simultaneous substitution 〈〈α̂1α̂2

† x̂Q〉〉 in
P 〈〈α̂1α̂2

† x̂Q〉〉 denotes applying independent modules4

4These modules are independent by definition of ∗X -terms α̂1
† x̂Q and α̂2

† x̂Q on P
depending only on the occurrence of α1 and α2 at the top level and the level of immediate
subterms of P . Similarly for 〈〈Pα̂ † x̂1x̂2〉〉 which is symmetrical.

21

Left :

(† -eras) : (P � α)α̂ † x̂Q → IQ � P �OQ

(† -dupl) : ([P 〉α̂1
α̂2

>α)α̂ † x̂Q → P 〈〈α̂1α̂2
† x̂Q〉〉

Right :

(† -eras) : Pα̂ † x̂(x�Q) → IP �Q�OP

(† -dupl) : Pα̂ † x̂(x< x̂1
x̂2
〈Q]) → 〈〈Pα̂ † x̂1x̂2〉〉Q

Figure 11: Structural actions

Definition 21 (Simultaneous substitutions). We define simultaneous substitutions
〈〈α̂1α̂2

† x̂Q〉〉 and 〈〈Pα̂ † x̂1x̂2〉〉 as follows:

• Left simultaneous substitution, P 〈〈α̂1α̂2
† x̂Q〉〉, is defined depending on the struc-

ture of term P to which it is applied:

P P 〈〈α̂1α̂2
† x̂Q〉〉

Pα1{R} IQ <

ÎQ1
ÎQ2
〈(Pα1{Rα̂2

† x̂2Q2})α̂1 † x̂1Q1〉
ÔQ

1

ÔQ
2
>OQ

Pα2{R} IQ <

ÎQ1
ÎQ2
〈(Pα2{Rα̂1

† x̂1Q1})α̂2 † x̂2Q2〉
ÔQ

1

ÔQ
2
>OQ

P β{R}, β 6= α1, α2 P β{([R〉α̂1

α̂2
>α)α̂ † x̂Q}

P {R1, R2} IQ <

ÎQ1
ÎQ2
〈P {R1α̂1

† x̂1Q1, R2α̂2
† x̂2Q2}〉

ÔQ
1

ÔQ
2
>OQ,

if α1 ∈ N(R1), α2 ∈ N(R2)

P {([R1〉α̂1

α̂2
>α)α̂ † x̂Q, R2} if α1, a2 ∈ N(R1)

P {R1, ([R2〉α̂1

α̂2
>α)α̂ † x̂Q}, if α1, a2 ∈ N(R2)

P x{R1, R2} Analogously to the previous case

Where R,R1, R2 denote immediate subterms of P , and where: IQ = I(Q) \
x, OQ = O(Q) and Qi = ind(Q, N(Q), i) for i = 1, 2.

• Right simultaneous substitution, 〈〈Pα̂ † x̂1x̂2〉〉Q, is defined depending on the struc-
ture of term Q to which it is applied:

22

3. Deactivation rules

As we will see, active cuts will be blocked by L-principal names. Thus
cuts must be deactivated to continue to be distributed through the terms.
Deactivation rules are given in Figure 12.

Left :

(† -deact) : Pα̂ † x̂Q → Pα̂ † x̂Q, if α is L-principal for P

Right :

(† -deact) : Pα̂ † x̂Q → Pα̂ † x̂Q, if x is L-principal for Q

Figure 12: Deactivation rules

Activation is dual of deactivation. Activation and deactivation rules are
designed is such that they do not allow loops. Indeed the side conditions do
not allow an activation of a cut followed by a deactivation of the same cut,
or vice versa.

Q 〈〈Pα̂ † x̂1x̂2〉〉Q

Q{R} Q{Pα̂ † x̂(x< x̂1

x̂2
〈R])}

Qx1{R1, R2} IP <
ÎP1
ÎP2
〈P1α̂1 † x̂1(Qx1{P2α̂2 † x̂2R1, R2})〉

ÔP
1

ÔP
2
>OP ,

if x2 ∈ N(R1)

IP <
ÎP1
ÎP2
〈P1α̂1 † x̂1(Qx1{R1, P2α̂2 † x̂2R2})〉

ÔP
1

ÔP
2
>OP ,

if x2 ∈ N(R2)

Qx2{R1, R2} Analogously to the previous case

Q{R1, R2}, y 6= x1, x2 IP <
ÎP1
ÎP2
〈Q{P1α̂1 † x̂1R1, P2α̂2 † x̂2R2}〉

ÔP
1

ÔP
2
>OP ,

if x1 ∈ N(R1), x2 ∈ N(R2)

Q{Pα̂ † x̂(x< x̂1

x̂2
〈R1]), R2}, if x1, x2 ∈ N(R1)

Q{R1, P α̂ † x̂(x< x̂1

x̂2
〈R2])}, if x1, x2 ∈ N(R2)

Qy{R1, R2} Analogously to the previous case

Where R,R1, R2 denote immediate subterms of Q, and where: IP = I(P), OP =
O(P) \ α and Pi = ind(P, N(P), i) for i = 1, 2.

23

4. Logical actions

The purpose of logical actions is to define reduction when L-principal
names are involved in a cut. See Figure 13.

(ren-L) : 〈y.α〉α̂ † x̂Q → Q{y/x}

(ren-R) : Pα̂ † x̂〈x.β〉 → P{β/α}

(ei-insert) : (ŷ P β̂ . α)α̂ † x̂(Q γ̂ [x] ẑ R) → either

{
(Qγ̂ † ŷP)β̂ † ẑR
Qγ̂ † ŷ(P β̂ † ẑR)

Figure 13: Logical actions

The two first logical rules define the merge of a capsule with another
term using renaming {y/x} which is a meta operation, which resembles the
λ-calculus meta-substitution. Renaming replaces simply a free name (unique
by linearity) by another free name. It does not essentially change the term.

The third logical action describes the direct interaction between an ex-
porter and an importer, which results in inserting the (immediate) subterm
of an exporter between the two (immediate) subterms of an importer.

5. Propagation rules

Propagation rules describe the propagation of a cut through the struc-
ture of a term. This is a step-by-step propagation (the reduction rules “de-
scribe” propagation). It is important to note that propagation of a cut over
another inactive cut is possible, which allows an elegant representation of
β-reduction. The rules are divided into “left” and “right” symmetric groups,
see Figures 14 and 15.

Observe for example the first rule in the left group. The rule is denoted
as (exp † − prop) and it shows how an active cut (in fact, a module β̂ † ŷR)
enters from the right-hand side through an exporter, up to its immediate
subterm. The rules which define propagation over an exporter or a cut require
side conditions to decide to which of the two immediate subterms the module
will go.

The rules which require additional explanations are (cut(c) † -prop) and
(†cut(c)-prop). These are the rules which define an exception when per-
forming propagation rules. They handle the case of propagation over a cut
with a capsule whose both names are cut-names. If we exclude these rules
from the system, we could construct an infinite reduction sequence.

24

(exp † -prop) : (x̂ P γ̂ . α)β̂ † ŷR → x̂ (P β̂ † ŷR) γ̂ . α, α 6= β

(imp † -prop1) : (P α̂ [x] ẑ Q)β̂ † ŷR → (P β̂ † ŷR) α̂ [x] ẑ Q, β ∈ O(P)

(imp † -prop2) : (P α̂ [x] ẑ Q)β̂ † ŷR → P α̂ [x] ẑ (Qβ̂ † ŷR), β ∈ O(Q)

(cut(c) † -prop) : (Pα̂ † x̂〈x.β〉)β̂ † ŷR → Pα̂ † ŷR

(cut † -prop1) : (Pα̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂Q, β ∈ O(P), Q 6= 〈x.β〉

(cut † -prop2) : (Pα̂ † x̂Q)β̂ † ŷR → Pα̂ † x̂(Qβ̂ † ŷR), β ∈ O(Q), Q 6= 〈x.β〉

(L-eras † -prop) : (x� P)β̂ † ŷR → x� (P β̂ † ŷR)

(R-eras † -prop) : (P � α)β̂ † ŷR → (P β̂ † ŷR)� α, α 6= β

(L-dupl † -prop) : (x< x̂1
x̂2
〈P])β̂ † ŷR → x< x̂1

x̂2
〈P β̂ † ŷR]

(R-dupl † -prop) : ([P 〉α̂1
α̂2

>α)β̂ † ŷR → [P β̂ † ŷR〉α̂1
α̂2

>α, α 6= β

Figure 14: Left propagation

Example 22. An example of an infinite reduction sequence in absence of
(cut(c) † -prop) and (†cut(c)-prop) rules:

(Pα̂ † x̂〈x.β〉)β̂ † ŷR
→ (Pα̂ † x̂〈x.β〉)β̂ † ŷR
→ Pα̂ † x̂(〈x.β〉β̂ † ŷR)

→ Pα̂ † x̂(〈x.β〉β̂ † ŷR)

→ Pα̂ † x̂(〈x.β〉β̂ † ŷR)

→ (Pα̂ † x̂〈x.β〉)β̂ † ŷR
→ (Pα̂ † x̂〈x.β〉)β̂ † ŷR

Besides that, the solution offered is intuitive as we would expect the terms

(Pα̂ † x̂〈x.β〉)β̂ † ŷR and Pα̂ † x̂(〈x.β〉β̂ † ŷR)

to reduce to the same term (which is in this case Pα̂ † ŷR).

25

(†exp-prop) : Pα̂ † x̂(ŷ Q β̂ . γ) → ŷ (Pα̂ † x̂Q) β̂ . γ

(† imp-prop1) : Pα̂ † x̂(Q β̂ [y] ẑ R) → (Pα̂ † x̂Q) β̂ [y] ẑ R, x ∈ I(Q)

(† imp-prop2) : Pα̂ † x̂(Q β̂ [y] ẑ R) → Q β̂ [y] ẑ (Pα̂ † x̂R), x ∈ I(R)

(†cut(c)-prop) : Pα̂ † x̂(〈x.β〉β̂ † ŷR) → Pα̂ † ŷR

(†cut-prop1) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷR, x ∈ I(Q), Q 6= 〈x.β〉

(†cut-prop2) : Pα̂ † x̂(Qβ̂ † ŷR) → Qβ̂ † ŷ(Pα̂ † x̂R), x ∈ I(R), Q 6= 〈x.β〉

(†L-eras-prop) : Pα̂ † x̂(y �Q) → y � (Pα̂ † x̂Q), x 6= y

(†R-eras-prop) : Pα̂ † x̂(Q� β) → (Pα̂ † x̂Q)� β

(†L-dupl-prop) : Pα̂ † x̂(y<
ŷ1
ŷ2
〈Q]) → y<

ŷ1
ŷ2
〈Pα̂ † x̂Q], x 6= y

(†R-dupl-prop) : Pα̂ † x̂([Q〉
β̂1
β̂2
>β) → [Pα̂ † x̂Q〉

β̂1
β̂2
>β

Figure 15: Right propagation

3.3. Operational properties

The reduction system enjoys some desirable properties as expressed by
the following lemma.

Theorem 23 (Basic properties of →).

1. Preservation of free names: If P → Q then N(P) = N(Q).

2. Preservation of linearity: If P is linear and P → Q then Q is linear.

Proof:. These properties can be confirmed by checking carefully each rule.
�

Preservation of free names holds in ∗X due to the use of erasers and duplica-
tors in rewrite rules (like in λlxr [23]). This property is sometimes referred
to as interface preservation like in interaction nets [27]. The property of
closure under reduction is a minimal requirement, it is a kind of linearity
preservation for ∗X -terms.

26

Simplification rules. We define the simplification rules, denoted 99K, which
can be seen as an efficient way to simplify terms. They are not reduction
rules as they do not involve cuts. The point is that applying a duplicator to
an eraser is of no interest and can be avoided by using simplification rules,
as defined by:

(sL) : x< ŷ
ẑ〈z � P] 99K P{x/y}

(sR) : [P � γ〉β̂γ̂ >α 99K P{α/β}

They are run before reduction rules, that is, we give them higher priority
during computation. One can see them as a kind of garbage collection, as
they simplify computation by preventing the situation when we duplicate a
term to erase one or both copies in the next step. It is easy to see that the
simplification rules preserve free names, linearity and types. The rules can
be given in a more general way:

(sgL) : I< Î1Î2〈I2 � P] 99K P{I/I1}

(sgR) : [P �O2〉
Ô1

Ô2
>O 99K P{O/O1}

3.4. The type assignment system

We restrict now to terms to which we can attach types of the form:

A,B ::= T | A→ B.

The type assignment of an ∗X -term P is expressed as P ··· Γ ` ∆, where
Γ is the antecedent whose domain is made of free innames of P and ∆ is the
succedent whose domain is made of free outnames of P . Contexts are sets
of pairs (name, formula). For example, Γ is a set of type declarations for
innames like x : A, y : B, while ∆ as a set of declarations for outnames like
α : A, β : A→ B, γ : C. Comma in the expression Γ,Γ′ stands for set union.

We will say that a term P is typable if there exist contexts Γ and ∆ such
that P ··· Γ ` ∆ holds in the system of inference rules given by Figure 16.
If we remove term-decoration and names, we get the classical sequent system
G1 given in Figure 1.

Example 24. An illustration could be the type assignment of the ∗X -term
which codes the proof of Peirce’s law.

27

(ax)
〈x.α〉 ··· x :A ` α :A

P ··· Γ ` α :A,∆ Q ··· Γ′, y :B ` ∆′

(L→)
P α̂ [x] ŷ Q ··· Γ,Γ′, x :A→ B ` ∆,∆′

P ··· Γ, x :A ` α :B,∆
(R→)

x̂ P α̂ . β ··· Γ ` β :A→ B,∆

P ··· Γ ` α :A,∆ Q ··· Γ′, x :A ` ∆′

(cut)
Pα̂ † x̂Q ··· Γ,Γ′ ` ∆,∆′

P ··· Γ ` ∆
(weak-L)

x� P ··· Γ, x :A ` ∆

P ··· Γ ` ∆
(weak-R)

P � α ··· Γ ` α :A,∆

P ··· Γ, x :A, y :A ` ∆
(cont-L)

z< x̂ŷ〈P] ··· Γ, z :A ` ∆

P ··· Γ ` α :A, β : A,∆
(cont-R)

[P 〉α̂β̂ >γ ··· Γ ` γ :A,∆

Figure 16: ∗X type system

(ax)
〈x.α1〉 ··· x : A ` α1 : A

(weak-R)
〈x.α1〉 � β ··· x : A ` α1 : A, β : B

(→R)
x̂ (〈x.α1〉 � β) β̂ . γ ··· ` α1 : A, γ : A→ B

(ax)
〈y.α2〉 ··· y : A ` α2 : A

(→L)
(x̂ (〈x.α1〉 � β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉 ··· z : (A→ B)→ A ` α1 : A,α2 : A

(cont-R)
[(x̂ (〈x.α1〉 � β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉α̂1

α̂2
>α ··· z : (A→ B)→ A ` α : A

(→R)
ẑ ([(x̂ (〈x.α1〉 � β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉α̂1

α̂2
>α) α̂ . δ ··· ` δ : ((A→ B)→ A)→ A

Example 25. The∗X -term which corresponds to λxyz.xz(yz), known as the
S-combinator of λ-calculus, is the following:5

ω̂ (û (x̂ (x< x̂1
x̂2
〈〈x2.ε〉 ε̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)]) γ̂ . η) η̂ . θ) θ̂ . α

5Some parts of terms are underlined to ease the reading.

28

The witness reduction property

An ∗X term is the interpretation of a proof in the sequent calculus. If we
use computations as proof-transformations, the property of witness reduction
is essential.

Theorem 26 (Witness reduction). Let S be an ∗X -term and Γ,∆ two
contexts. Then the following holds:

If S ··· Γ ` ∆ and S → S ′, then S ′ ··· Γ ` ∆

Remark 27. Linearity and free names are preserved (Theorem 23).

Proof:. The proof is straightforward and goes by inspecting the reduction
rules, and by induction on the structure of terms [44].

Theorem 28 (99K preserves types). Simplification rules preserve types.

If S ··· Γ ` ∆ and S 99K S ′, then S ′ ··· Γ ` ∆

Proof:. By analyzing the proof trees corresponding to S and S ′, for both
simplification rules.

4. Explicit vs. implicit: relation between ∗X and X

The ∗X calculus is a low-level language whose syntax is an extension of
that of the X calculus, and therefore its reduction steps decompose reduction
steps of X , which on its own is also a low level language.

The expressive power of X has been illustrated in [42], by encoding various
calculi, such as: λ, λx and λµ. Also the X calculus is encoded into λµ
in [2]. The first hint on how to relate λ̄µµ̃ and Gentzen’s sequent calculus for
classical logic LK (which corresponds to X) was already given by Curien and
Herbelin in [7]. It was studied in detail through the λξ-calculus [28], where
mutual embedings are presented. These results were used to give an elegant
proof of strong normalization for the λ̄µµ̃-calculus.

Our view is that most of the features of the X calculus can also be shown
for ∗X . Since the ∗X calculus has a lower level of granularity, is expected to be
at least as expressive as the X calculus. In case of potential implementation
this model is better suited, since it introduces the possibility of controlling
both duplication and erasure of parts of a program. In this chapter we study

29

the relation between ∗X and the following calculi; intuitionistic: λ, λx and
λlxr, and classical: X and λ̄µµ̃. In this section we show the relation between
X -terms and ∗X -terms. We present the encodings in both directions, and
study the relation between the computations. It is shown that X -reduction
steps are decomposed into more atomic steps of ∗X , due to the linearity and
the presence of explicit terms for erasure and duplication. Finally, we study
the relation between typing of X -terms and typing of ∗X -terms.

4.1. From X to ∗X
We now describe how to encode X -terms, which are possibly not linear,

into terms of the ∗X calculus. Before doing that we will introduce two op-
erations to help us formulate the encoding. They will be used in the formal
definition and their only purpose is to make definitions easier to read. The
first operation, denoted by }, adds erasers where needed.

Definition 29 (Potential eraser: }). The operation } is defined as fol-
lows:

x} P } α =


P, x, α ∈ N(P)

x� P, x /∈ N(P), α ∈ N(P)

P � α, x ∈ N(P), α /∈ N(P)

x� P � α, x, α /∈ N(P)

The second operation, denoted by C ()B, adds contractions where needed.
Typically this will happen when encoding terms which have two immediate
subterms, denoted by C{P,Q}, and it will be used to prevent the multiple
occurrences of names. This operation also improves the readability of the
encoding, although we could have used actual contractions.

Definition 30 (Potential contractions: C()B). The operationC()B is
defined as follows:

IC
(
C{P,Q}

)
BO =


C{P,Q}, N(P) ∩N(Q) = ∅

I < Î1Î2〈C{P,Q}〉
Ô1

Ô2
>O when N(P) ∩N(Q) 6= ∅,

where I = I(P) ∩ I(Q)
O = O(P) ∩O(Q)

Definition 31. The encoding of X -terms in ∗X is defined by induction, as
presented by Figure 17.

30

V〈x.α〉U∗X := 〈x.α〉

Vx̂ P β̂ . αU∗X :=
(
x̂ (x} VPU∗X } β) β̂ . α

)
B α,

VP α̂ [x] ŷ QU∗X := IC
(

(VPU∗X } α) α̂ [x] ŷ (y } VQU∗X)
)
BO,

for x /∈ N(P), x /∈ N(Q)

VP α̂ [x] ŷ QU∗X := IC
(
x< x̂1

x̂2
〈(VP{x1/x}U

∗X } α) α̂ [x2] ŷ (y } VQU∗X)]
)
BO,

for x ∈ N(P), x /∈ N(Q)

VP α̂ [x] ŷ QU∗X := IC
(
x< x̂1

x̂2
〈(VPU∗X } α) α̂ [x1] ŷ (y } VQ{x2/x}U

∗X)]
)
BO,

for x /∈ N(P), x ∈ N(Q)

VP α̂ [x] ŷ QU∗X := IC
(
x< t̂

x̂3
〈t< x̂1

x̂2
〈(VP{x1/x}U

∗X } α) α̂ [x2] ŷ (y } VQ{x3/x}U
∗X)]]

)
BO,

for x ∈ N(P), x ∈ N(Q)

VPα̂ † x̂QU∗X := IC
(

(VPU∗X } α)α̂ † x̂(x} VQU∗X)
)
BO,

Figure 17: Encoding the X -terms into ∗X

Figure 17 defines the encoding of pure X -terms in ∗X . Active cuts can be
encoded in the following way:

VPα̂ † x̂QU∗X := IC
(

(VPU
∗X } α)α̂ † x̂(x} VQU

∗X)
)
BO

VPα̂ † x̂QU∗X := IC
(

(VPU
∗X } α)α̂ † x̂(x} VQU

∗X)
)
BO

Remark 32. Notice that if the X -term is linear, i.e., if there is no need to
use the operations } andC()B, we get simply

V〈x.α〉U∗X = 〈x.α〉

Vx̂ P β̂ . αU∗X = x̂VPU∗X β̂ . α

VP α̂ [x] ŷ QU∗X = VPU∗X α̂ [x] ŷ VQU∗X

VPα̂ † x̂QU∗X = VPU∗X α̂ † x̂VQU∗X

31

Remark 33. The encoding is defined in such a way that none of the free
names is lost. Notice that this is not the case with occurrences of free names.
If a free name has multiple occurrences in X -term, it will occur only once
after the encoding.

Lemma 34. The encoding V U∗X preserves the set of free names.

N(P) = N(VPU
∗X)

Proof. By inspection of the encoding rules. �

Example 35. Take for example P = (x̂ 〈x.α〉 β̂ . γ) γ̂ [z] ŷ 〈y.α〉, where α as

a free name occurs twice, and β̂ does not bind an occurrence of a free name.
The encoding gives:

VPU
∗X = [(x̂ (〈x.α1〉 � β) β̂ . γ) γ̂ [z] ŷ 〈y.α2〉〉α̂1

α̂2
>α

where α has only one occurrence, and β̂ does bind an occurrence of a free
name.

Notation. We will sometimes annotate the arrow in order to ease the reading:

we use
∗X−−→ to denote ∗X -reduction and

X−−→ to denote X -reduction. Moreover
→ * and →+ are used to denote zero or more, and one or more reduction
steps, respectively.

Simulation of X -reduction. In what follows we show that the reduction rules
of X can be simulated in ∗X . Initially we show that the notion of introduced
name in X corresponds to the notion of L-principal name in ∗X .

Lemma 36. The notion of introduced name by a term in X , and that of
L-principal name of a term in ∗X , correspond to each other.

1. If α is freshly introduced by S, then α is L-principal for VSU∗X

2. If α is L-principal for S, then α is freshly introduced by VSUX

Proof. 1. Case: S = 〈x.α〉. We have VSU∗X = V〈x.α〉U∗X = 〈x.α〉, and
thus α is L-principal for 〈x.α〉.

Case: S = x̂ P β̂ . α. Since α is freshly introduced α /∈ N(P). We have

VSUX = Vŷ P β̂ . αU∗X= ŷ (y } VPU∗X } β) β̂ . α, and thus by definition
α is L-principal for VSU∗X .

32

2. Case: S = 〈x.α〉. We have VSUX = V〈x.α〉UX = 〈x.α〉, where α is
freshly introduced by 〈x.α〉, by definition.

Case: S = x̂ P β̂ . α. By linearity it stands that α /∈ N(P). We have

S = Vŷ P β̂ . αUX= ŷ VPUX β̂ . α, and thus α is freshly introduced by
VSUX .

It is not difficult to check that the same holds for innames. �

Theorem 37 (Simulation of X -reduction). Let P and P ′ be X -terms.
Then the following holds:

If P
X−−→ P ′ then VPU

∗X ∗X−−→+ (IP\P ′)� VP ′U∗X � (OP\P ′)

Proof. The proof goes by inspecting the reduction rules and by induction
on the structure of terms. We give the proof for some reduction rules.

Logical rules:.

• Take the (cap− ren) rule: 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉. We have:

V〈y.α〉α̂ † x̂〈x.β〉U∗X , V〈y.α〉U∗X α̂ † x̂V〈x.β〉U∗X
, 〈y.α〉α̂ † x̂〈x.β〉
→ 〈y.b〉
, V〈y.β〉U∗X

• Take the (exp− ren) rule: (ŷ P β̂ . α)α̂ † x̂〈x.γ〉 → ŷ P β̂ . γ, α /∈ N(P).
We have (assuming for simplicity that γ /∈ N(P)):

V(ŷ P β̂ . α)α̂ † x̂〈x.γ〉U∗X , Vŷ P β̂ . αU∗X α̂ † x̂V〈x.γ〉U∗X

, (ŷ (y } VPU∗X } β) β̂ . α)α̂ † x̂〈x.γ〉
→ ŷ (y } VPU∗X } β) β̂ . γ

, Vŷ P β̂ . γU∗X

• Take the (imp− ren) rule: 〈y.α〉α̂ † x̂(Q β̂ [x] ẑ R)→ Q β̂ [y] ẑ R, where
x /∈ N(Q), x /∈ N(R). We have:

V〈y.α〉α̂ † x̂(Q β̂ [x] ẑ R)U∗X , V〈y.α〉U∗X α̂ † x̂VQ β̂ [x] ẑ RU∗X

, 〈y.α〉α̂ † x̂(IC
(

(VQU∗X } β) β̂ [x] ẑ (z } VRU∗X)
)
BO)

→ IC
(

(VQU∗X } β) β̂ [y] ẑ (z } VRU∗X)
)
BO

, VQ β̂ [y] ẑ RU∗X

For simplicity we assumed that y /∈ N(Q) and y /∈ N(R).

33

Activation rules.

• Take the (act−L) rule: Pα̂ † x̂Q → Pα̂ † x̂Q, if α not freshly introduced
by P . We have:

VPα̂ † x̂QU∗X , IP∩QC
(

(VPU∗X } α)α̂ † x̂(x} VQU∗X)
)
BOP∩Q

Lem.36−−−−→ IP∩QC
(

(VPU∗X } α)α̂ † x̂(x} VQU∗X)
)
BOP∩Q

, VPα̂ † x̂QU∗X

Similarly for the rule (act−R).

Propagation rules.

• Take the († − eras) rule: 〈x.α〉β̂ † ŷR → 〈x.α〉, where α 6= β.
We will take into consideration the possibility that x, α ∈ N(R). Thus we
have:

V〈x.α〉β̂ † ŷRU∗X , xC
(

(V〈x.α〉U∗X � β)β̂ † ŷ(y } VRU∗X)
)
Bα

→ xC
(
IR � V〈x.α〉U∗X �OR

)
Bα

99K (IR \ x)� V〈x.α〉U∗X � (OR \ α)

• Take the († − deact) rule: 〈x.β〉β̂ † ŷR → 〈x.β〉β̂ † ŷR. We have:

V〈x.β〉β̂ † ŷRU∗X , x C
(
V〈x.β〉U∗X β̂ † ŷ(y } VRU∗X)

)
, x C

(
〈x.β〉β̂ † ŷ(y } VRU∗X)

)
→ x C

(
〈x.β〉β̂ † ŷ(y } VRU∗X)

)
, V〈x.β〉β̂ † ŷRU∗X

• Take the († −prop) rule: (x̂ P γ̂ . α)β̂ † ŷR → x̂ (Pβ̂ † ŷR) γ̂ . α, α 6= β.
We assume for simplicity N(x̂ P γ̂ . α) ∩N(R) = ∅. We have:

34

V(x̂ P γ̂ . α)β̂ † ŷRU∗X , (Vx̂ P γ̂ . αU∗X } β)β̂ † ŷ(y } VRU∗X)

, ((x̂ (x} VPU∗X } γ) γ̂ . α) } β)β̂ † ŷ(y } VRU∗X)

≡ (x̂ ((x} VPU∗X } γ) } β) γ̂ . α)β̂ † ŷ(y } VRU∗X)

→ x̂ (((x} VPU∗X } γ) } β)β̂ † ŷ(y } VRU∗X)) γ̂ . α

≡ x̂ (x} ((VPU∗X } β)β̂ † ŷ(y } VRU∗X)) } γ) γ̂ . α

, x̂ (x} (Pβ̂ † ŷR) } γ) γ̂ . α

, Vx̂ (Pβ̂ † ŷR) γ̂ . αU∗X

• Take the († -prop-dupl-deact) rule:

(x̂ P γ̂ . β)β̂ † ŷR → (x̂ (Pβ̂ † ŷR) γ̂ . β)β̂ † ŷR, and consider β ∈ N(P).
We assume for simplicity N(P) ∩N(R) = ∅, then we have:

V(x̂ P γ̂ . β)β̂ † ŷRU∗X , Vx̂ P γ̂ . βU∗X β̂ † ŷ(y } VRU∗X)

, ([x̂ (x} (VPU∗X{β1/β}) } γ) γ̂ . β2〉
β̂1
β̂2
>β)β̂ † ŷ(y } VRU∗X)

→ (x̂ (x} (VPU∗X{β1/β}) } γ) γ̂ . β2)〈〈β̂1β̂2 † ŷ(y } VRU∗X)〉〉

, IRC
(

(x̂ (x} (VPU∗X{β1/β}β̂1 † ŷ(y } VRU∗X)) } γ) γ̂ . β2)β̂2 † ŷ(y } VRU∗X)
)
BOR

, V(x̂ (Pβ̂ † ŷR) γ̂ . β)β̂ † ŷRU∗X

• Take the († -gc) rule: Pα̂ † x̂Q → P, if α /∈ N(P). Assume N(P) ∩
N(Q) = ∅, we have:

VPα̂ † x̂QU∗X , (VPU∗X � α)α̂ † x̂(x} VQU∗X)

→ IVQU
∗X � VPU∗X �OVQU

∗X
,

which is what we expected.

Thus we are done with the proof. �

Preservation of types. We now show that the encoding preserves types. In
the typed X calculus contexts Γ and ∆ may contain some auxiliary pairs
(name,type). This is due to the fact that weakening is implicit in X , i.e., it
is not controlled explicitly. We have to keep that in mind when formulating
the lemma.

35

Lemma 38 (Preservation of types). If P is an arbitrary X -term such
that P ··· Γ ` ∆, then

((dom(Γ)) \ I(P))� VPU∗X � ((dom(∆)) \O(P)) ··· Γ ` ∆

Proof. The proof works by case analysis and induction on the structure of
terms. We give the detail for encoding of capsule and exporter, whereas the
other cases work the same way.

• Rule: V〈x.α〉U∗X := 〈x.α〉.
If 〈x.α〉 ··· Γ ` ∆ where x : A ∈ Γ and α : A ∈ ∆, then, in ∗X we have:
〈x.α〉 ··· x : A ` α : A, which is equivalent to:

(dom(Γ) \ x)� 〈x.α〉 � (dom(∆) \ α) ··· Γ ` ∆

• Rule: Vx̂ P β̂ . αU∗X :=
(
x̂ (x} VPU∗X } β) β̂ . α

)
B α.

If we assume the most generic case, namely for x, β /∈ N(P) and α ∈ N(P),
then the encoding gives:

Vx̂ P β̂ . αU∗X := [x̂ (x� (VPU∗X{α1/α})� β) β̂ . α1〉α̂1
α̂2

>α

On the one hand we have:

P ··· Γ ` α : A→ B,∆
(→ R)

x̂ P β̂ . α ··· Γ ` α : A→ B,∆

where, as stated previously, x : A ∈ Γ, β : B ∈ ∆.
On the other hand,

VPU
∗X ··· Γ ` α : A→ B,∆

(ren)
VPU

∗X {α1/α} ··· Γ ` α1 : A→ B,∆
(weak-L)

x� VPU∗X {α1/α} ··· Γ, x : A ` α1 : A→ B,∆
(weak-R)

x� VPU∗X {α1/α} � β ··· Γ, x : A ` α1 : A→ B, β : B,∆
(→ R)

x̂ (x� VPU∗X {α1/α} � β) β̂ . α ··· Γ ` α1 : A→ B,α2 : A→ B,∆
(cont-R)

[x̂ (x� VPU∗X {α1/α} � β) β̂ . α〉α̂1
α̂2

>α ··· Γ ` α : A→ B,∆

�

36

4.2. From ∗X to X
Now we investigate the opposite direction. We show how to represent

∗X -terms by X -terms and then we show how ∗X -reductions are simulated by
X -reductions.

Definition 39 (Encoding ∗X into X). The encoding of ∗X -terms in X cal-
culus is defined inductively as shown by Figure 6.2.

V〈x.α〉UX := 〈x.α〉

Vx̂ P β̂ . αUX := x̂VPUX β̂ . α

VP α̂ [x] ŷ QUX := VPUX α̂ [x] ŷ VQUX

VPα̂ † x̂QUX := VPUX α̂ † x̂VQUX

Vx< ŷ
ẑ〈P]UX := VPUX{x/y}{x/z}

V[P 〉β̂γ̂ >αUX := VPUX{α/β}{α/γ}
Vx� PUX := VPUX

VP � αUX := VPUX

Figure 18: Encoding the ∗X -terms into X

Encodings are defined without considering the active cuts but it is not diffi-
cult to extend it:

VPα̂ † x̂QUX := VPUX α̂ † x̂VQUX

VPα̂ † x̂QUX := VPUX α̂ † x̂VQUX

The encoding V UX does the opposite to V U∗X . Namely, it simply removes
erasers and duplicators from terms (some renamings are also performed).
That is the reason for a possible decrease of free names after the encoding.

Lemma 40 (Properties of V UX). The encoding V UX satisfies the follow-
ing:

1. N(P) ⊆ N(VPUX)

37

2. VPUX{x/y} = VP{x/y}UX if x /∈ N(P)

Proof. The former statement can be checked by carefully inspecting the
encoding rules, and the later by case analysis and induction on the structure
of terms. �

The computation in ∗X is simulated by computation in X in the way
expressed by Theorem 42; each reduction step is mapped into one or more
reduction steps.

Lemma 41. Let P be an ∗X -term, and VPUX its encoding in X . Then the
following holds:

1. α, x /∈ N(P)→ α, x /∈ N(VPUX)

2. α, x ∈ N(VPUX)→ α, x ∈ N(P)

Proof. Trivially by inspecting encoding rules. Names are lost during en-
coding only if they are introduced in ∗X by weakening.

Theorem 42 (Simulating ∗X -reduction). Let P and P ′ be X -terms. Then
the following holds:

If P
∗X−−→ P ′ then VPUX X−−→+ VP ′UX

Proof. The proof goes by inspecting the reduction rules and by induction
on the structure of terms. We provide the proof for several reduction rules.

Logical rules.

• Take the (ren− L) rule: 〈y.α〉α̂ † x̂Q→ Q{y/x}. We have:

V〈y.α〉α̂ † x̂QUX , V〈y.α〉UX α̂ † x̂VQUX
, 〈y.α〉α̂ † x̂VQUX

ren-L−−−→ VQUX{y/x}
= VQ{y/x}UX

• Take the (ren−R) rule: Pα̂ † x̂〈x.β〉 → P{β/α}. We have :

VPα̂ † x̂〈x.β〉UX , VPUX α̂ † x̂V〈x.β〉UX
, VPUX α̂ † x̂〈x.β〉

ren-R−−−→ VPUX{β/α}
= VP{β/α}UX

38

Activation rules.

• Take the (act−L) rule: Pα̂ † x̂Q → Pα̂ † x̂Q, if α not L-principal for
P . We have:

VPα̂ † x̂QUX , VPUX α̂ † x̂VQUX
Lem.36−−−−→ VPUX α̂ † x̂VQUX

, VPα̂ † x̂QUX

Similarly for the rule (act−R).

Dectivation rules.

• Take the († -deact) rule: Pα̂ † x̂Q → Pα̂ † x̂Q, if α is L-principal for
P . We have:

VPα̂ † x̂QUX , VPUX α̂ † x̂VQUX
Lem.36−−−−→ VPUX α̂ † x̂VQUX
, VPα̂ † x̂QUX

Similarly for the rule († -deact).

Structural rules.

• Take the († -eras) rule: (P � α)α̂ † x̂Q → IQ � P �OQ. We have:

V(P � α)α̂ † x̂QUX , VP � αUX α̂ † x̂VQUX

, VPUX α̂ † x̂VQUX , α /∈ N(P)
† -gc−−−→ VPUX

, VIQ � P �OQUX

• Take the († -dupl) rule: ([P 〉α̂1
α̂2

>α)α̂ † x̂Q → P 〈〈α̂1α̂2
† x̂Q〉〉. We

analyze here several cases of P .
- Take P = ŷ R γ̂ . β, β 6= α1, α2. By definition of ∗X terms α1, α2 ∈ N(R).
Notice that P is of the form P β{R}. We have:

39

V([ŷ R γ̂ . β〉α̂1
α̂2

>α)α̂ † x̂QUX , V[ŷ R γ̂ . β〉α̂1
α̂2

>αUX α̂ † x̂VQUX
, (Vŷ R γ̂ . βUX{α/α1}{α/α2})α̂ † x̂VQUX
, ((ŷ VRUX γ̂ . β){α/α1}{α/α2})α̂ † x̂VQUX
, (ŷ (VRUX{α/α1}{α/α2}) γ̂ . β)α̂ † x̂VQUX
† -prop−−−−→ ŷ ((VRUX{α/α1}{α/α2})α̂ † x̂Q) γ̂ . β

, ŷ (V[R〉α̂1
α̂2

>αUX α̂ † x̂Q) γ̂ . β

, ŷ V([R〉α̂1
α̂2

>α)α̂ † x̂QUX γ̂ . β
, Vŷ (([R〉α̂1

α̂2
>α)α̂ † x̂Q) γ̂ . βUX

, VP β{R}〈〈α̂1α̂2
† x̂Q〉〉UX , when β 6= α1, α2,

by def. of simultaneous subst. on page 22.

- Take P = ŷ R γ̂ . α1. By definition of ∗X terms a2 ∈ N(R), α1 /∈ N(R).
Notice that P is of the form Pα1{R}, α2 ∈ R. We have:

V([ŷ R γ̂ . α1〉α̂1
α̂2

>α)α̂ † x̂QUX

, V[ŷ R γ̂ . α1〉α̂1
α̂2

>αUX α̂ † x̂VQUX
, (Vŷ R γ̂ . α1UX{α/α1}{α/α2})α̂ † x̂VQUX
, ((ŷ VRUX γ̂ . α1){α/α1}{α/α2})α̂ † x̂VQUX
, (ŷ (VRUX{α/α2}) γ̂ . α)α̂ † x̂VQUX

† -prop-dupl-deact−−−−−−−−−−−→ (ŷ ((VRUX{α/α2})α̂ † x̂VQUX) γ̂ . α)α̂ † x̂VQUX
= (ŷ (VR{α/α2}UX α̂ † x̂VQUX) γ̂ . α)α̂ † x̂VQUX
, (ŷ VR{α/α2}α̂ † x̂QUX γ̂ . α)α̂ † x̂VQUX
, Vŷ (R{α/α2}α̂ † x̂Q) γ̂ . αUX α̂ † x̂VQUX

, VIQ <

ÎQ1
ÎQ2
〈(ŷ (Rα̂2

† x̂2Q2) γ̂ . α1)α̂1 † x̂1Q1〉
ÔQ1
ÔQ2

>OQUX

, VPα1{R}〈〈α̂1α̂2
† x̂Q〉〉UX ,

by def. of simultaneous subst. on page 22.

- Take P = R1 γ̂ [y] ẑ R2, and assume α1, α2 ∈ N(R1). Notice that P is of
the form P y{R1, R2}. We have:

40

V([R1 γ̂ [y] ẑ R2〉α̂1
α̂2

>α)α̂ † x̂QUX

, V[R1 γ̂ [y] ẑ R2〉α̂1
α̂2

>αUX α̂ † x̂VQUX
, (VR1 γ̂ [y] ẑ R2UX{α/α1}{α/α2})α̂ † x̂VQUX
, ((VR1UX γ̂ [y] ẑ VR2UX){α/α1}{α/α2})α̂ † x̂VQUX
, ((VR1UX{α/α1}{α/α1}) γ̂ [y] ẑ VR2UX)α̂ † x̂VQUX

, (V[R1〉α̂1
α̂2

>αUX γ̂ [y] ẑ VR2UX)α̂ † x̂VQUX
† -prop-dupl1−−−−−−−−→ (V[R1〉α̂1

α̂2
>αUX α̂ † x̂VQUX) γ̂ [y] ẑ (VR2UX α̂ † x̂VQUX)

† -gc−−−→ (V[R1〉α̂1
α̂2

>αUX α̂ † x̂VQUX) γ̂ [y] ẑ VR2UX

, V([R1〉α̂1
α̂2

>α)α̂ † x̂QUX γ̂ [y] ẑ VR2UX

, V(([R1〉α̂1
α̂2

>α)α̂ † x̂Q) γ̂ [y] ẑ R2UX

, VP y{R1, R2}〈〈α̂1α̂2
† x̂Q〉〉UX , when α1, α2 ∈ N(R1)

- Take P = R1 γ̂ [y] ẑ R2, and assume α1 ∈ N(R1), α2 ∈ N(R2). We have:

V([R1 γ̂ [y] ẑ R2〉α̂1
α̂2

>α)α̂ † x̂QUX

, V[R1 γ̂ [y] ẑ R2〉α̂1
α̂2

>αUX α̂ † x̂VQUX
, (VR1 γ̂ [y] ẑ R2UX{α/α1}{α/α2})α̂ † x̂VQUX
, ((VR1UX γ̂ [y] ẑ VR2UX){α/α1}{α/α2})α̂ † x̂VQUX
, ((VR1UX{α/α1}) γ̂ [y] ẑ (VR2UX{α/α2}))α̂ † x̂VQUX

† -prop-dupl1−−−−−−−−→ (VR1UX{α/α1}α̂ † x̂VQUX) γ̂ [y] ẑ (VR2UX{α/α2}α̂ † x̂VQUX)

, VR1α̂1
† x̂QUX γ̂ [y] ẑ VR2α̂2

† x̂QUX

, VIQ <

ÎQ1
ÎQ2
〈(R1α̂1

† x̂1Q1) γ̂ [y] ẑ (R2α̂2
† x̂2Q2)〉

ÔQ1
ÔQ2

>OQUX

, VP y{R1, R2}〈〈α̂1α̂2
† x̂Q〉〉UX , when α1 ∈ N(R1), α2 ∈ N(R2)

The proof for propagation group of rules is straightforward. �

4.3. Strong normalisation of ∗X
Exploiting the strong normalisation property of simply typed X [36], we

prove that ∗X is strongly normalising. We first prove that the previously
defined encoding of ∗X into X preserves typeability.

Lemma 43 (Preservation of types). For an arbitrary ∗X -term P such
that P ··· Γ ` ∆, it stands

VPUX ··· Γ ` ∆

41

Proof. By induction on typing derivations along the lines of Lemma 38.�

This section presents the proof of strong normalisation for ∗X calculus.

Theorem 44 (Strong Normalisation). The reduction system of ∗X is strongly
normalising on simply-typed terms.

Proof. Let P ··· Γ ` ∆. Assume that P is not strongly normalising, which
means that there is an infinite reduction starting with P

P
∗X−−→ P1

∗X−−→ . . .
∗X−−→ Pn

∗X−−→ . . .

then by Theorem 42,

VPUX X−−→+ VP1UX
X−−→+ . . .

X−−→+ VPnUX
X−−→+ . . .

On the other hand according to Lemma 43,

VPUX ··· Γ ` ∆

and the fact that X calculus is strongly normalising on typed terms ([36]),
we conclude that VPUX is strongly normalising, which contradicts the as-
sumption. Hence, P is strongly normalising. �

5. Conclusions

We have presented two calculi implementing the Curry-Howard corre-
spondence for classical logic sequent calculi. The first one, called X provides
terms for sequent proofs in the calculus G3 and a description of cut elimina-
tion by reductions. A type system for this calculus assigns types to terms.
The type of a term is the proposition that the proof associated with the term
proves. We designed the calculus ∗X in some sense as an extension of X
with rules for explicit structural rules known in the sequent calculus G1 as
weakening and contraction. In ∗X , the operator associated with weakening
is an erasure and the operator associated with contraction is a duplication.
Like X , ∗X is associated with a type system to represent proofs in a sequent
calculus with weakening and contraction. We have explored the connection
between the logic calculus G3 (resp. G1) and its implementation X (resp.
∗X). We have also shown how X can be embedded in ∗X and vice-versa.
As a low level language, it reveals details in both, structure of terms and

42

computation, but in the same time this explicitness yields the essence of
classical proofs and classical computations. We know that the λ-calculus is
the framework of functional sequential programming and ∗X can be seen as
an extension of λ-calculus. An interesting direction for future work could
be to explore the connections between ∗X and non deterministic distributed
calculi like what has been done by van Bakel, Cardelli and Vigliotti [41].

[1] Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J., 1991. Explicit substi-
tutions. Journal of Functional Programming 1 (4), 375–416.

[2] Audebaud, P., van Bakel, S., 2007. A completeness result for λµ,
preprint.

[3] Barbanera, F., Berardi, S., 1994. A symmetric lambda calculus for ”clas-
sical” program extraction. In: TACS. pp. 495–515.

[4] Barbanera, F., Berardi, S., Schivalocchi, M., 1997. ”Classical”
programming-with-proofs in λsym: an analysis of non-confluence. In:
TACS. pp. 365–390.

[5] Barendregt, H., Ghilezan, S., 2000. Lambda terms for natural deduction,
sequent calculus and cut-elimination. J. Funct. Programming 10 (1),
121–134.

[6] Bloo, R., Rose, K., 1995. Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection. In:
CSN’95 Computer Science in the Netherlands. pp. 62–72.
URL ftp://ftp.diku.dk/diku/semantics/papers/D-246.ps

[7] Curien, P.-L., Herbelin, H., 2000. The duality of computation. In: Proc.
5 th ACM SIGPLAN Int. Conf. on Functional Programming (ICFP’00).
ACM, pp. 233–243.

[8] Danos, V., Joinet, J.-B., Schellinx, H., 1996. Computational isomor-
phisms in classical logic (extended abstract). Electronic Notes in Theo-
retical Computer Science 3.

[9] Danos, V., Joinet, J.-B., Schellinx, H., 1997. A new deconstructive logic:
Linear logic. Journal of Symbolic Logic 62.

43

[10] David, R., Guillaume, B., 2001. A lambda-calculus with explicit weak-
ening and explicit substitution. Mathematical Structures in Computer
Science 11 (1), 169–206.

[11] Dougherty, D., Ghilezan, S., Lescanne, P., 2008. Characterizing strong
normalization in the Curien-Herbelin symmetric lambda calculus: ex-
tending the Coppo-Dezani heritage. Theor. Comput. Sci. 398 (1-3), 114–
128.

[12] Dougherty, D., Ghilezan, S., Lescanne, P., Likavec, S., 2005. Strong
normalization of the dual classical sequent calculus. In: 12th Int. Conf.
LPAR. Vol. 3835 of Lecture Notes in Computer Science. pp. 169–183.

[13] Esṕırito Santo, J., 2007. Completing Herbelin’s programme. In: Pro-
ceedings of Types Lambda Calculus and Application, TLCA’07. Vol.
4583 of LNCS. pp. 118–132.

[14] Esṕırito Santo, J., Ghilezan, S., Ivetić, J., 2008. Characterising strongly
normalising intuitionistic sequent terms. In: International Workshop
TYPES’07 (Selected Papers). Vol. 4941 of Lecture Notes in Computer
Science. pp. 85–99.

[15] Gentzen, G., 1935. Untersuchungen über das logische Schließen. Math.
Z. 39, 176–210, 405–431.

[16] Ghilezan, S., 2007. Terms for natural deduction, sequent calculus and
cut elimination in classical logic. In: Reflections on Type Theory,
Lambda Calculus, and the Mind - Essays Dedicated to Henk Baren-
dregt on the Occasion of his 60th Birthday.
URL http://www.cs.ru.nl/barendregt60/essays/ghilezan/

[17] Girard, J.-Y., 2001. Locus solum: From the rules of logic to the logic of
rules. Mathematical Structures in Computer Science 11 (3), 301–506.

[18] Girard, J.-Y., Lafont, Y., Taylor, P., 1989. Proofs and Types. Vol. 7 of
Cambridge Tracts in Theoret Computer Science. Cambridge University
Press.

[19] Griffin, T., 1990. A formulae-as-types notion of control. In: Proceedings
of the 17th ACM symposium on Principles of programming languages,
POPL. pp. 47–58.

44

[20] Herbelin, H., 1995. Séquents qu’on calcule: de l’interprétation du calcul
des séquents comme calcul de λ-termes et comme calcul de stratégies
gagnantes. Thèse de doctorat, Université Paris VII.

[21] Hyland, J. M. E., 2002. Proof theory in the abstract. Annals of Pure
and Applied Logic 114 (1-3), 43–78.

[22] Kesner, D., Lengrand, S., 2005. Extending the explicit substitution
paradigm. In: RTA. pp. 407–422.

[23] Kesner, D., Lengrand, S., 2007. Ressource operators for lambda-calculus.
Information and Computation 205 (4), 419–473, long version.

[24] Kesner, D., Renaud, F., 2009. The prismoid of resources. In: Královic,
R., Niwinski, D. (Eds.), MFCS. Vol. 5734 of Lecture Notes in Computer
Science. Springer, pp. 464–476.

[25] Kesner, D., Renaud, F., 2011. A prismoid framework for languages with
resources. Theor. Comput. Sci. 412 (37), 4867–4892.

[26] Kleene, S., 1952. Introduction to Metamathematics. No. 1 in Bibliotheca
mathematica. North-Holland, revised edition, Wolters-Noordhoff, 1971.

[27] Lafont, Y., 1995. From proof-nets to interaction nets. In: Advances in
linear logic. Cambridge University Press, pp. 225–247.

[28] Lengrand, S., 2003. Call-by-value, call-by-name, and strong normaliza-
tion for the classical sequent calculus. In: Electronic Notes in Theoretical
Computer Science. Vol. 86.

[29] Lescanne, P., Zunic, D., 2008. Computing with diagrams in classical
logic. In: Inf. Proc. of WRS, Reduction Strategies in Rewriting and
Programming. Vol. 08-09. Research Institute for Symbolic Computation,
Linz, Austria, pp. 91–109.

[30] Milner, R., 1995. Communication and concurrency. Prentice Hall Inter-
national (UK) Ltd., Hertfordshire, UK.

[31] Parigot, M., 1992. An algorithmic interpretation of classical natural de-
duction. In: Int. Conf. LPAR. Vol. 624 of Lecture Notes in Computer
Science. pp. 190–201.

45

[32] Rose, K., Bloo, R., Lang, F., 2011. On explicit substitution with names.
Journal of Automated Reasoning, 1–26.

[33] Sangiorgi, D., Walker, D., 2001. π-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, New York, USA.

[34] Troelstra, A. S., Schwichtenberg, H., 1996. Basic Proof Theory. Cam-
bridge University Press, New York, NY, USA.

[35] Urban, C., 2000. Classical logic and computation. Ph.D. thesis, Univ. of
Cambridge.

[36] Urban, C., 2001. Strong normalisation for a Gentzen-like cut-elimination
procedure. In: Typed Lambda Calculus and Applications. Vol. 2044 of
Lecture Notes in Computer Science. pp. 415–429.

[37] Urban, C., Bierman, G. M., 1999. Strong normalisation of cut-
elimination in classical logic. In: Typed Lambda Calculus and Appli-
cations, TLCA’99. Vol. 1581 of Lecture Notes in Computer Science. pp.
365–380.

[38] Urban, C., Bierman, G. M., 2001. Strong normalisation of cut-
elimination in classical logic. Fundamenta Informaticae 45 (1-2), 123–
155, (appeared also at TLCA in 1999).

[39] Urban, C., Bierman, G. M., 2001. Strong normalisation of cut-
elimination in classical logic. Fundam. Inf. 45 (1,2), 123–155.

[40] van Bakel, S., 2012. Completeness and soundness results for X with
intersection and union types. Fundamenta Informaticae To appear.

[41] van Bakel, S., Cardelli, L., Vigliotti, M. G., 2011. From X to π;
representing the classical sequent calculus in the pi-calculus. CoRR
abs/1109.4817.

[42] van Bakel, S., Lengrand, S., Lescanne, P., 2005. The language X : cir-
cuits, computations and classical logic. In: Proc.9th Italian Conf. on
Theoretical Computer Science (ICTCS’05). Vol. 3701 of Lecture Notes
in Computer Science. pp. 81–96.

[43] van Bakel, S., Lescanne, P., 2008. Computation with classical sequents.
Mathematical Structures in Computer Science 18 (3), 555–609.

46

[44] Žunić, D., 2007. Computing with sequent and diagrams in classical logic
- calculi ∗X , c©X and dX . Ph.D. thesis, Ecole Normale Supériéure de Lyon,
France.
URL http://tel.archives-ouvertes.fr/tel-00265549

[45] Wadler, P., 2003. Call-by-value is dual to call-by-name. In: Proc.8th Int.
Conf. on Functional Programming.

[46] Whitehead, A. N., Russell, B., 1925. Principia Mathematica, 2nd Edi-
tion. Cambridge University Press.

47

