4 research outputs found

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead

    Malware: the never-ending arm race

    Get PDF
    "Antivirus is death"' and probably every detection system that focuses on a single strategy for indicators of compromise. This famous quote that Brian Dye --Symantec's senior vice president-- stated in 2014 is the best representation of the current situation with malware detection and mitigation. Concealment strategies evolved significantly during the last years, not just like the classical ones based on polimorphic and metamorphic methodologies, which killed the signature-based detection that antiviruses use, but also the capabilities to fileless malware, i.e. malware only resident in volatile memory that makes every disk analysis senseless. This review provides a historical background of different concealment strategies introduced to protect malicious --and not necessarily malicious-- software from different detection or analysis techniques. It will cover binary, static and dynamic analysis, and also new strategies based on machine learning from both perspectives, the attackers and the defenders

    String-based malware detection for android environments

    No full text
    Android platforms are known as the less security smartphone devices. The increasing number of malicious apps published on Android markets suppose an important threat to users sensitive data,compromising more devices everyday. The commercial solutions that aims to fight against this malware are based on signature methodologies whose detection ratio is low. Furthermore,these engines can be easily defeated by obfuscation techniques,which are extremely common in app plagiarism. This work aims to improve malware detection using only the binary information and the permissions that are normally used by the anti-virus engines,in order to provide a scalable solution based on machine learning. In order to evaluate the performance of this approach,we carry out our experiments using 5000 malware and 5000 benign-ware,and compare the results with 56 Anti-Virus Engines from VirusTotal
    corecore