
Research Article
Analysis and Evaluation of SafeDroid v2.0, a Framework for
Detecting Malicious Android Applications

Marios Argyriou ,1 Nicola Dragoni ,1,2 and Angelo Spognardi 3

1DTU Compute, Technical University of Denmark, Denmark
2Centre for Applied Autonomous Sensor Systems, Örebro University, Sweden
3Dipartimento Informatica, Sapienza Università di Roma, Italy

Correspondence should be addressed to Angelo Spognardi; spognardi@di.uniroma1.it

Received 16 March 2018; Revised 2 July 2018; Accepted 12 August 2018; Published 5 September 2018

Academic Editor: Karl Andersson

Copyright © 2018 MariosArgyriou et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications
available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious
applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework,
that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based onmachine learning
techniques.The main goal of our work, besides the automated production of fully sufficient prediction and classification models in
terms of maximum accuracy scores andminimumnegative errors, is to offer an out-of-the-box framework that can be employed by
theAndroid security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 frameworkmakes it possible
to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of
features to consider, such as dataset balance and dataset selection.The framework also provides a server, for generating experiment
reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of
experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments
confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very
limited overhead.

1. Introduction

The breakthrough of smartphones occurred some years ago
thanks to the combination of telephony and Internet in
a single portable machine, offered in many flavors, like
Android, iOS, Windows Phone, and Blackberry. Nowadays,
Android is by far the dominant platform, with an average
worldwide market share of 85% [1]. It is acknowledged that
the number of Android-based devices skyrocketed due to the
open-source approach, as opposite to the closed approach
followed by its competitors. That means high availability of
applications outside the official marketplaces (Google Play)
that Android users can freely download and install in their
devices [2]. Beside being a great source of revenue for device
manufacturers and app developers, availability of the apps
also represent a gold opportunity for malicious developers

that can hide and include harmful pieces of code (i.e.,
malware) in their apps [3], in order to evade the security
checks of the official markets [4].

To face the challenge of Android malware detection,
researchers have invested many efforts in designing systems
and mechanisms to detect malicious activities in Android
apps, like critical data leakages or unintentional hidden
functions. The proposed solutions range within many differ-
ent techniques, starting from signature-based detection, to
artificial intelligence, leveraging static, dynamic, and hybrid
analysis [5]. As further explored in the following sections,
the most adopted approach among the detection proposals
is the use of machine learning classifiers, while the most
distinguishing element is the choice of the features to be
considered for the classification that vary from app requested
permissions and system commands to leery API calls. A

Hindawi
Security and Communication Networks
Volume 2018, Article ID 4672072, 15 pages
https://doi.org/10.1155/2018/4672072

http://orcid.org/0000-0001-7615-2957
http://orcid.org/0000-0001-9575-2990
http://orcid.org/0000-0001-6935-0701
https://doi.org/10.1155/2018/4672072

2 Security and Communication Networks

promising and also effective solution considers performing
static analysis of the app binary code and relying on their
different usage of API calls and packages to classify malicious
and benign apps. With this direction in mind, we aim to
advance an effective proposal for Androidmalware detection.
Contribution and Outline of the Paper. In this paper, we
present SafeDroid v2.0 ([6] is a preliminary version of
this paper), a complete framework to discriminate benign
applications from malicious ones. A collection of scripts, a
database, a web server, and an Android application form the
SafeDroid v2.0 framework. These components pull together
firmly in order to analyse, classify, and, eventually, decide
whether an Android application is of benign or malicious
nature.

The core of the framework is constituted by machine
learning classifiers that are the base of real-time malware
detection service for Android devices. Our solution intro-
duces a complete, automated system for static analysis of
Android applications, data extraction and storage, and com-
parison of different machine learning classifiers and algo-
rithms, as well as visualisation of the produced results. The
main target audiences of this framework are both the security
research community and individual Android users. Our
framework can be employed by Android malware analysts
as an out-of-the-box solution to analyse and investigate the
structural elements of malware. To foster further research
activity, our framework supports many hyper-tuning param-
eters, which are evaluated throughout the detection process,
that can be used to further explore the solution space and
produce state-of-the-art and specialised models. We will
show that the framework is fast, scalable, easy to use, and
able to produce results of high accuracy, since it has been
evaluated during an extensive campaign of experiments.

Our SafeDroid v2.0 framework is an elegant open-source
solution that can also be used to provide a detailed overview
and comparison of different classification algorithms and
finally choose the best available model. The main novelty of
SafeDroid v2.0 is the high level of automation of the testing
procedure that includes application analysis, statistical anal-
ysis, feature vector extraction, service update, and feedback
presentation to the user. This allows the security experts
to explore many different choice of settings and options
easily and extensively: the framework, in fact, supports user
parameterization in the sense of allowing the user to choose
exactly the conditions that the dataset has to fulfil. Eventually,
the produced models can be tested in an integrated back-end
server that comes along a light-weight Android application.

The rest of the paper is organised as follows. Section 2
presents related researches on the topic of Android malware
detection. Section 3 illustrates the architecture of the pro-
posed framework and a detailed overview of our methodol-
ogy.We evaluate the performance of our proposal in Section 4
and we finally conclude the paper in Section 5.

2. Related Work

There are three main approaches that try to tackle the
problem of malware detection. We classify the approaches

based on the detection techniques they employ. We can have
the static approach, which analyses the code of an application,
the dynamic approach, which inspects the app behaviour
at run time, and, finally, the hybrid approach, namely, a
combination of the two previous methodologies. We classify
and discuss the academic literature based on such three
categories.

2.1. Detection Based on Static Analysis. Fuchs et al. [7]
followed a modular analysis approach to discriminate mali-
cious applications from benign ones. They created a tool
called ScAndroid which allowed incremental checking of
application as they are installed on the device.This tool solely
extracts security specification frommanifests that come along
the applications and checks whether data flows are consistent
with a set of predefined specifications. It uses static analysis
to extract the appropriate information and makes automated
security decisions based on the data flows such as deciding
if it is safe to grant certain permissions to an application.
Alternatively, it can pass security control to the user by
providing relevant context like issued certificates and offline
reviews.

Aafer et al. in [8] and Xiangyu et al. in [15] performed
frequency analysis technique of the extracted API calls. In
[8], the feature set was refined to use only API calls invoked
by third-party applications. The APIs came mostly out of
advertisement, web tracking, and web analysis packages. As
the next step, they clustered the APIs by invocation methods
(application specific, third-party package, or both). Their
dataset consisted of 20,000 applications, 19.9% of which were
malicious, and theywere able to achieve 97.8% accuracy using
machine learning algorithms. As a conclusion, they present
statistics to argue in favour of the superiority of theAPI-based
performance as compared to permission models. The same
motif was engaged in [15] but produced opposite results. In
this paper, the permission-based model managed to achieve
84.4% accuracy with the help of machine learning classifiers
in contrast with the 70% that was achieved with the use of
API-based model.

Ali-Gombe et al. in [9] followed the same mind-set. They
concentrated efforts on op-code sequence analysis. After the
Feature Extraction phase, the signature extraction produced
a three-level cluster containing API calls made within the
application, API call sequences from method signatures,
and finally a collection of all method signatures for each
class separately. F-Score, recall, and precision metrics were
used to evaluate their model. Although they managed to get
decent values (97.5%, 98%, and 97%, respectively) they argue
that all their techniques could be circumvented with simple
obfuscation techniques.

In another relevant publication of Bhattacharya et al. [10],
the researchers focused on feature elimination techniques
that would allow them to remove irrelevant features and thus
limit the length of the feature vector set. The collection of
the features is extracted from the Android Manifest file as
they consider only the permissions. The feature elimination
is carried out to define a subset of significant installation-
time features to use in model construction. The main goal of
this phase is to find a minimum set of features such that the

Security and Communication Networks 3

resulting probability distribution of data class is as close as
possible to the original distribution created with all features.
The limited size of the explored database (100 benign and 70
malicious) allowed the creation of 4 databases with different
number of features, 83, 10, 5, and 2. K-fold validation (k=10)
produced an accuracy score of 77%.

In [11], published in 2016, Yang et al. employed a new
approach to analyse Androidmalware, namely, static analysis
with intensive feature engineering. The authors consider
features from different sources and different levels of the
application. They create 5 feature sets. 3 of the feature sets
come from the static analysis of the Dalvik Executable of
the app, from the binary, the assembly, and the API levels
of abstraction. The remaining 2 are acquired by analysing
the Android Manifest file over the binary and information
levels. Finally, the 5 feature sets are combined to form the
final feature vector that is used for the training of themachine
learning algorithm. This approach was evaluated over a
dataset of 1,100 apps, out of which 50% was malicious. The
research produced 98.1% detection accuracy and 8% of false
positive rate, using the Random Forest classifier for a number
of 50 trees.

In 2017, Fereidooni et al. proposed ANASTASIA [12], a
system to detect malicious applications through statically
analysing applications’ behaviour. Although the techniques
did not differ much from the previously discussed ones,
they had the advantage of obtaining a big dataset of 11,187
malicious and 18,677 benign applications. For the model
training procedure, they used 9 different classification algo-
rithms, namely, XGboost, Adaboost, RandomForest, SVM,
KNearestNeighbors, Logistic Regression, Naive Bayes, Deci-
sion Tree, and Deep Learning classifiers. The produced
feature vector included 560 items and consisted of intents,
permissions, system commands for root exploits, API calls,
and malicious activities. They managed to perform fine
tuning of the classification hyperparameters and thus achieve
97.3% accuracy on their training set.

In another work of 2017, Mart́ın et al. in [13] devel-
oped a string-based malware detection mechanism employ-
ing supervised learning. Their study considered applica-
tion binary information and permission-based features to
estimate the nature of Android apps. The authors discuss
the advantage of the string-based model over traditional
signature-based ones, stating that it can deal with the different
malwarewithout the need to disassemble or run processes. To
evaluate their solution, the authors compared the accuracy
results with common antivirus engines. They employed the
Bagging methodology to train the model and achieved a 97%
discrimination accuracy, a result better than the 83% that the
best antivirus engine had to offer.

The research of Milosevic et al. [14], published in 2017,
utilised both classification and clustering techniques to dis-
criminate between malware and benign apps in a tool called
Seraphimdroid. The researchers formed a feature set that
consisted of permissions and API calls. Android apps were
first decompiled and then a text mining classification based
on bag-of-words technique was used to train the model. In
order to evaluate the performance of the Seraphimdroid tool,
the researchers conducted experiments for permission-based

and code-based clustering and classification. The results for
the permission-based approach showed an F1 score of 87.1%
and 64.6% correctly clustered instances while the results for
the source-based approach produced maximum F1 accuracy
of 95.8% and 82.3% correctly clustered instances.

In 2018, Wang et al. [16] extracted app characteristics
found both in string values and structural features. Requested
permission and API calls are acquired through the string
values while function call nodes are inferred from the
structural features. As a proof of point, experiments were
performed on a data set of 2682 Android applications, out of
which 1296 weremalicious.The final results were obtained by
weighting the respective detection results of the two types of
features, achieving 97.9% accuracy in terms of F1 score.

2.2. Detection Based on Dynamic Analysis. Kuester et al. in
[17] created a tool to monitor and collect relevant system
events on the users’ devices, namely, MonitorMe.The formal-
ity was to represent malware behaviour as actions while each
set of actions represents a word. Collected words eventually
will form a pseudo language. Every captured system call of
each application is assigned a label, based on the component
number and the intention of the action itself, and is sent
back to the server responsible for determining the nature
of the applications. Additionally, MonitorMe framework
defines policies against privilege escalation attacks which
aim on gaining elevated access to protected resources. The
tool recognises malicious payload launches that occur after
system boot. Among the drawbacks of this approach was that
the device needs to be rooted throughout the procedure and
the high percentage of false positives against true positive
values, at 28% and 93.9%, respectively.

Burguera et al. in [18] try to challenge the obfuscation
problem. They developed a crowdsourcing framework to
collect samples of execution traces of applications, namely,
CrowdDroid. Its main functionality lies on monitoring the
underlying Linux kernel system calls and reporting the
findings back to a centralised server. The primary goal is to
identify different behaviours in applications that share iden-
tical names. The server then creates a dataset of behavioural
data for each application. They cluster each dataset, using
partitioning clustering algorithms, to differentiate between
benign applications that demonstrate similar system call
patterns to malicious ones.

Enck et al. in [19] demonstrated a tool named
TaintDroid for real-time analysis by leveraging Android’s
virtualized execution environment. Their goal was to
track the flow of private sensitive data through third-party
applications, based on the assumption that downloaded
third-party apps are unreliable. The tool monitors how these
applications access and manipulate users’ personal data.
In order to do so, it observes which data hit the outgoing
interface and their respective path by labelling them. The
tool logs the data labels, the application responsible for
transmission as well as the destination. The researchers
observed 30 third-party applications found in Google
Market and they discovered that the 65% of them transmitted
sensitive data without user consent.

4 Security and Communication Networks

2.3. Detection Based on Hybrid Analysis. Sharid et al. in [20]
focused on analysing application native code, monitoring,
and detecting abnormalities during runtime. Native code
refers to machine code that is executed directly by the main
processor, opposed to bytecode, which is executed in the
virtual environment of theAndroid JVM.Their static analysis
focuses on defining certain patterns in the control flow.
The patterns target ostensibly insignificant incidents that
could pass otherwise unobserved. Their tool, DroidNative,
is also able to evaluate bytecode by making use of the
Android runtime. ART is the managed runtime that is used
by applications and system services to compile bytecode
and execute the Dalvik Executable format. In this case,
ART is used to compile bytecode into native code for the
purpose of analysis. Their experiment dataset consists of
5,490 applications, 1,758 of which are malwares. The two
experiments produced contrasting results; the first one had
98.5% accuracy with a variation of 1% while the later ranged
from 70% to 80%.The false positive rates showed high values
for both, the lowest being around 20% and the highest up to
40%.

A case study by Poeplau et al. in [21] revealed that around
10% of the applications found in the official Android market
are loading external code at runtime. This percentage rises
further when one refers to themost popular applications.The
primal intention of the research was to find commonalities
among the dynamic loading of code by creating a tool to
automatically detect loading attempts using static analysis
techniques. The efforts were gathered around examining
Java class loaders, package contexts, code disassembling,
and ART. After finding that code-loading mechanisms are
employed by the majority of benign applications, the authors
suggested security policy reformation concerning dynamic
code-loading allowance.

DroidScreening [22] framework scans applications at
runtime to identify malicious patterns of execution. The
solution followed the standard objectives of the antivirus
industry, that are the malware sample screening and the
identification of threat level. DroidScreening employed
both static analysis to extract key identifiers of the targeted
Android application to train the machine learning model
and lazy associative classification algorithms to produce the
classification model. The novelty of the solution lays on the
trigger dynamic execution-based analysis environment that
generates various system-wide events to trigger malicious
activity. Their dataset numbered 1554 malware and 2446
benign applications. DroidScreening scored an F1 value of
91.1%. In addition to F1 score, the authors crafted a metric for
the average misclassification cost, because they state that the
cost of different misclassification errors should not have the
same effect on the final accuracy result.

The idea behind the work of Bae et al. [23] was a
detection system that monitors network usage, network con-
nections, APIs, and permissions of an Android application.
The first two were observed dynamically at run time while
the latter were statically extracted by the application. The
novelty behind this idea was to tackle the advent of new
types of malware threats rather than focusing only on the
already identified families of malware.The choice of building

a hybrid solution is defined by observing that dynamic
analysis adds significant amount of overhead to the device
and static methods are easily evaded by obfuscation. The
authors complimented the two methods to maximise the
detection accuracy and minimise the introduction of high
overhead functions. SVM classifier was employed to produce
the machine learning model. The evaluation tests, conducted
on a dataset of 413 benign and 398 malicious applications,
produced 90.3% precision rate and a false positive rate
of 13.9%. Moreover, the solution introduced a maximum
overhead of 22.7% at the Android device.

2.4. Limitations of the Existing Approaches. The detection
based on static analysis does not consume many resources
and produces the most accurate results. From the negative
side, there are techniques that can obfuscate the results, such
as code encryption and dynamic load of code. Dynamic
analysis techniques are more sophisticated but add a seri-
ous amount of computation overhead. They surpass static
analysis in being resilient to evasion, code obfuscation, and
polymorphism. They run as daemons processes, constantly
monitoring the device for abnormal execution patterns or
unprivileged information flow. Thus, they consume more
resources, in terms of power and bandwidth, which leads
to the degradation of the user experience. The observation
of vague patterns produces high false positive rates, which
makes dynamic analysis unfeasible in real-time scenarios.
While it seems the most promising approach for future
detection mechanisms, hybrid analysis is still in premature
stages of development.

Finally, we can see how all the proposed solutions are
not easily customisable, but are always provided as final
solutions. Given the dynamic and rapidly changing field
of malware creation, it is desirable to have an automated
framework that allows to experiment and test with many
different combinations of machine learning classifiers, with a
high degree of freedom and flexibility in the choice of features
to consider, dataset balance and selection. This can also give
any attentive researcher the possibility of experimenting and
validating unsolicited ideas and not common combinations
of parameters.

3. SafeDroid v2.0 Framework Architecture

In this section, we present the architecture of our framework,
namely, how the components are related as well as the logical
steps of the execution. To enforce flexibility in the framework,
each component is designed to run independently from the
others. This means that each one has its own self-standing
functionality and that each step can be iterated, split, altered
in any component, and fully customised, according to the
parameters defined by the user.

Figure 1 presents an overall overview of SafeDroid v2.0,
with the main components and how they logically depend
on each other. The framework can be summarised in one
Android app, responsible to interact with the user, five
main components, and a database. The first component that
operates on the original dataset is the Feature Extraction

Security and Communication Networks 5

SafeDroid Framework Perimeter
dataset

FE
(feature extraction)

app data analysis

FVC
(feature vector creation)

feature set
selection

classifier
tuning

model
training

MG
(model generation)

SafeDroid App
dex file

dex file

classifier
component

reporting
component

graph graph

Androwarn
library

vector
generation

DB
of App

features

app
features

data
set

sele
ctio

n

feature
vectors

model
report

Figure 1: Overview of the SafeDroid v2.0 framework architecture, namely, the components and their interaction.

component that is responsible to reverse engineer the appli-
cation binary code and to store the output in a database.
The Feature Vector Creation component, which comes next,
determines the most suitable features to use and builds
the training and the testing sets for the Model Generation
component. Several classifiers are generated and the most
accurate one is selected as the model to be adopted in
the SafeDroid v2.0 app. Finally, the model is exported to
the Classification component that sends the final result of
the analysis to the Reporting component that is the main
interfaces with the Android users.

Before detailing the SafeDroid v2.0 framework, it is
important to make an important premise about how the
user privacy is taken into account when working with
sensitive data as users’ data and users’ application preferences.
SafeDroid v2.0 is a tool as many others proposed in literature:
since the main focus of the security community is to protect
against malware, the collection of user data and application
list is an established practice in this research field. Thus, we
can observe that we think that is important to protect the
privacy of the users, but probably it is more important to
protect her data against the malicious activity of malware
(and then using all the possible resources for this aim).

As academic researchers, we provide as an additional
guarantee of our bona fide several suggestions on how to
address the privacy issue. First of all, we already released
the full source code of our framework (https://github.
com/Dubniak/SafeDroid-v2.0), together with the datasets
and the parameters we used to perform the experiments
presented in this paper: this means that it can be used directly
by the Android user itself, without the need to give away its
data to anyone and, still, check for the safety of its running or
ready-to-install apps.

Secondly, we can easily imagine to include a transparent
“anonymiser” element that addresses all those elements that
could be used to mine the privacy of the user: the literature
about this form of data-processing is huge and still growing,
as an additional proof that the overall objective to obtain the
security of the users is of outmost importance and can be
pursued adopting the right tools that the state of the art offers.

In the following, we detail each single component and
describe its main functionality together with the interaction
among each component.

3.1. Feature Extraction. The Feature Extraction (FE) compo-
nent is responsible for the analysis of the input apps.Themain
source of the apps for building the knowledge of the system
is a dataset of labelled apps (malicious or benign). However,
after the initialisation of the system, new apps are provided
by the user for analysis and detection purposes, by means of
the SafeDroid v2.0 app.

As a static-analysis-based framework, the role of the
FE component is to extract all the useful data from the
binary code of a given app such as identification infor-
mation (name, alias, date, check-sums, etc.) and primi-
tives that highlight the use of the app (API, permissions,
third packages, etc.). The app analysis is performed by the
FE component employing the functionality of AndroWarn
(https://github.com/maaaaz/androwarn). AndroWarn is an
open-source tool for reverse engineering of Android appli-
cations. The Feature Extraction component leverages an
optimised revision of the library to perform a static analysis of
the Dalvik bytecode of an application, which is represented as
a Smali (intermediate file format between Dalvik Executable
and Java source code). As detailed in Figure 2, the user has
to provide as input a dataset of applications that will be

6 Security and Communication Networks

U
SE

R
IN

PU
T

Androwarn library

manifest file

dev information

API calls

permissions

O
U

TP
U

T

extracted features

API 1

API 2

API 3

API n

app dataset

Figure 2: Overview of the Feature Extraction process.

processed by the FE component. Each app is analysed by the
optimised AndroWarn library and all the APIs are extracted
from the bytecode, to become the extracted features.

Since the app analysis is generally time and resource
expensive (as detailed in Section 4), the result of the reverse
engineering is permanently stored in another component
of SafeDroid v2.0, the database, together with a label that
designates the nature of an app. In this way the framework can
realise a large dataset of applications that can be continually
expanded, as new apps arrive at the FE component.

As in any other machine learning solution, the dataset
constitutes the knowledge base for the whole framework,
from the training to the testing phase up to the detection
mechanism and all the other SafeDroid v2.0 components rely
on it to perform their functions: for example, the Feature
Vector Creation generates the input for the Model Generator
(namely, feature vectors) evaluating the extracted features
and their usage among the considered apps, while the Model
Generator builds the classifiers leveraging the feature vectors.
The distinction between malicious and benign applications
managed by the FE component is critical for the correct
outcome of the whole detection process.

3.2. Feature Vector Creation. The Feature Vector Creation
component (Figure 1, shortened to FVC from now on)
performs three main functions: it extracts the features from
the dataset of apps (accessing to the DB), then it finds the
most discriminatory features the detection mechanism will
later use to identify the nature of any app, and, finally, it
generates a feature vector for each app that will be the input
for the next components. An overall picture of the involved
steps is depicted in Figure 3. The FVC is tailored in such way
to allow the user to choose the desired execution parameters,
such as the size and the balance of the dataset: the high
efficiency of the whole evaluation process allows to build
several experiments that can be used to empirically evaluate
and compare several possible solutions. Since the main target
of SafeDroid v2.0 is the security research community, we give
freedom to the user by providing a framework with many

parameters that supports unconstrained execution modes.
For example, one execution could be set to consider only
a small part of the dataset, another one to consider only
the dominant malwares, i.e., those apps that have the most
distinguishable behaviour. As soon as the app dataset is
selected and the parameters for the analysis are provided,
the SafeDroid v2.0 framework is able to automate all the
following steps, up to the generation of the model. However,
this setup is, eventually, one of the most critical steps. Thus,
users should acknowledge potential biases to the results
that are induced by the choice of the execution parameters.
However, as many other frameworks publicly released, our
tool can only help the experts exploring several (possibly
optimal) solutions, but we can clearly miss the best solution,
as part of the human bias. In some sense, we could say that we
can help removing the human bias, providing a framework
that makes testing in an automated way several settings in
parallel possible, but we can not eventually exclude a human
bias or mistake in principle.

For this reason, the SafeDroid v2.0 allows the creation
of multiple datasets in order to prepare the knowledge
base for different experiments. Each dataset will be possibly
composed of different features (namely, APIs), such that it
will be able to generate different app classifiers. The whole
procedure can be iteratively repeated when new applications
are added to the whole dataset, to generate updated versions
of the feature sets that, in turn, will generate new, updated
versions of the app classifiers.

We will now detail all the steps performed by the FVC
component in order to generate the feature vectors for the
apps in the dataset. We start considering the dataset 𝐷 the
user provides for the Feature Selection phase.

Given a dataset of applications 𝐷, we can see it as the
union of two distinct subsets, namely, 𝐷 = 𝐵 ∪ 𝑀, where
𝐵 and 𝑀 are the subset of the Benign and the subset of
the Malicious applications, respectively. The idea is to build
a feature set leveraging the frequency of each API in every
app in the dataset. The frequency is deducted by dividing the
occurrences of each API over the total occurrences that the

Security and Communication Networks 7

app dataset for
vector creation

feature vectors

feature vector generation

app dataset for
feature selection

threshold set

feature dataset

U
SE

R
IN

PU
T

O
U

TP
U

T

feature set selection

app dataset for
vector creation

Δ



F

DD

Figure 3: Overview of the Feature Vector Creation processing steps.

specific API has in the dataset, for both the malicious and the
benign ones.

More formally, if we denote as App X ←󳨀 API.𝑎 the
fact that application App X makes use of the API API.𝑎,
we can define a sort of indicator function (from Wikipedia:
an indicator function is a function defined on a set 𝑋 that
indicates the membership of an element in a subset 𝐴 of 𝑋,
having the value 1 for all elements of 𝐴 and the value 0 for all
elements of𝑋 not in 𝐴) 1𝑋(𝑎) as

1𝑋 (𝑎) =
{
{
{

1 if App X←󳨀 API.𝑎,
0 else

(1)

and, then, we can evaluate the frequency of API.𝑎 in the
subset of the benign applications 𝜙𝐵𝑎 as

𝜙𝐵 (𝑎) = 1𝑏 ∑
𝑋∈𝐵

1𝑋 (𝑎) (2)

where 𝑏 is the number of benign applications, namely, 𝑏 = |𝐵|.
We can similarly define

𝜙𝑀 (𝑎) = 1𝑚 ∑
𝑋∈𝑀

1𝑋 (𝑎) (3)

as the frequency of API.𝑎 in the subset of the malicious appli-
cations, where 𝑚 is the number of malicious applications,
namely,𝑚 = |𝑀|.

With the two values 𝜙𝐵(𝑎) and 𝜙𝑀(𝑎) we can, then,
evaluate the difference

Δ𝜙 (𝑎) = 󵄨󵄨󵄨󵄨󵄨𝜙
𝐵 (𝑎) − 𝜙𝑀 (𝑎)󵄨󵄨󵄨󵄨󵄨 (4)

that denotes if a given API.𝑎 is more frequent in one of the
two subsets: informally, we can tell that the higher its Δ𝜙,
the higher the power of an API to discriminate as malign or
benign, an application that uses such API.

To perform the feature set selection, we set a threshold 𝑡
for the value of Δ𝜙 and we consider only those API 𝑎 such
that Δ𝜙(𝑎) ≥ 𝑡. In this way, we are actually selecting a subset

of the whole set of the APIs, with a discriminating power that
depends on 𝑡. Such a subset of APIs can be used as a feature
set to build a classifier for the dataset of our applications.
Furthermore, if we select more than one threshold, we will
have more feature sets. SafeDroid v2.0, indeed, given in input
a set of 𝑘 thresholds 𝜏 = {𝑡1, . . . , 𝑡𝑘}, is able to generate 𝑘
different feature sets that can be used for the next steps of the
classifier generation. In particular, given a set of thresholds
𝜏 = {𝑡1, . . . , 𝑡𝑘} as input from the user, the framework
generates a family F of feature sets as

F = ⋃
𝑡∈𝜏

{𝑎 | 𝑎 ←󳨀 App X ∈ 𝐷 and Δ𝜙 (𝑎) >= 𝑡} ; (5)

that is, for each threshold 𝑡 in 𝜏, it generates a new set with
those APIs that belong to any of the apps in 𝐷, such that the
Δ𝜙 of those API is greater than or equal to the threshold 𝑡.
Each of those new sets is included in the family of feature sets
F . We can informally say that, for each value of a threshold,
the framework resolves a feature set, namely, a set of APIs that
tries to describe the behaviour of an application.

The last operation of the FVC is the generation of the rel-
evant binary vector for a given app, namely, a representation
of an app suitable to input the machine learning algorithms
and generate a classifying model. The idea is to have a vector
encoding the use of each API of the feature set for every app:
each API is assigned a dimension of the vector, where there is
a 1 if the corresponding API in the feature set is used by the
app, and 0 otherwise. For this purpose, the FVC considers
each app in the dataset, one by one, and checks if it uses any
of the APIs of the selected feature set, again one by one.

For example, suppose to have an application App Xwhich
uses the set {API.a, API.c, API.d, API.e, API.f } of
APIs. Given the feature set {API.a, API.b, API.c, API.g
}, we would obtain a binary feature vector

FV (App X) = 1 0 1 0 (6)

In this example, the first dimension is 1, since it corre-
sponds to API.a and this API is used by App X, the second
dimension is 0 because API.b is not used by App X, and so

8 Security and Communication Networks

on. The number of the produced feature vectors depends on
the number of apps in the dataset provided in input and the
number of thresholds in 𝜏, while their length will depend on
the feature sets in F .

Besides the option to receive a static dataset as input,
SafeDroid v2.0 helps the setup of a batch of experiments since
it is able to randomly generate a family of app datasets, with
different combinations of parameters: namely, the user can
specify any combination of dataset sizes (𝑠) and balance (𝑟)
between malicious and benign applications, and the frame-
work will generate datasets with the given characteristics.
More formally, given a set 𝜌 of pairs (𝑠, 𝑟), where 𝑠 is the
expected size of the dataset and 𝑟 is the expected ratio of
the malicious applications in the dataset, the framework will
produce a family D of app datasets as

D = ⋃
(𝑠,𝑟)∈𝜌

𝐴 𝑠,𝑟 (7)

where, for each 𝐴 𝑠,𝑟 ∈ D, we have that
󵄨󵄨󵄨󵄨𝐴 𝑠,𝑟
󵄨󵄨󵄨󵄨 = 𝑠, (8)

󵄨󵄨󵄨󵄨𝐴 𝑠,𝑟 ∩𝑀
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐴 𝑠,𝑟
󵄨󵄨󵄨󵄨
= 𝑟 (9)

Each dataset in D will be used as input for all the phases
(Feature Selection, Feature Vector Creation, and the fol-
lowing steps described next) and will produce different
results and classifiers. We just recall that the generation of
D is very efficient because it is produced leveraging the
application database, built in the previous Feature Extraction
phase.

3.3. Model Generation. The goal of the Model Generation
component (Figure 1, MG from now on) is to choose
the best classification method for a given dataset of (𝐷)
received in input and to build the relative classifier (trained
model) [24]. This is represented in Figure 1 by the classi-
fier tuning and model training steps, since the MG evalu-
ates several different machine learning classifiers and their
most effective classification tuning parameters to maximise
the accuracy metrics and minimise the mis-classifications.
Again, we stress that the choice of the machine learn-
ing classifiers and the parameters are full responsibility of
the user, since SafeDroid v2.0 is a framework to support
the analysis of several possible settings of options and
parameters.

The MG component supports three modes of execution,
namely, optimum feature vector, optimum dataset,
and unattended. In the optimum dataset mode, the dataset
is split in subsets, as defined by the user. The framework
then trains the prediction model based on the optimum
slice of the dataset that is the one that provides the highest
accuracy and lowest negative results. In the optimum feature
vector mode, the framework creates multiple feature sets
based on the user choice. Then, it adopts the one that
optimally describes the nature of the apps. It is crucial
to notice that the final accuracy results are obtained by

testing on the whole dataset. In the unattended mode of
execution, the framework does not apply any optimisation
algorithm.

The methodology adopted for SafeDroid v2.0 is the
standardmachine learning trial-and-error approach [24] and
the selection is done comparing the outcome of two proce-
dures: a standard cross-validation experiment and a greedy
look-up with a split of the input dataset in training/testing
subsets. The parameters for both the procedures are set by
the user (number of folds for the cross-validation and the
training/testing set ratio).

In our experiments, the SafeDroid v2.0 framework
employs the functionality of the following classification
algorithms: K-Nearest Neighbor, Support Vector Machine,
Random Forest, Decision Tree, Multilayer Perceptron, and
Adaptive Boosting [25]. In particular, the framework uses the
cross-validation technique to produce accuracy results of all
classifiers and then compares the cross-validation scores of
the different classifiers with the greedy look-up procedure.
If the two values are different (e.g., the classifier algorithm),
SafeDroid v2.0 reinitiates the procedure to produce one final
classifier that will be used to produce the prediction model.
At this stage, graphs that visualise both the learning and the
training procedures are displayed to provide feedback to the
user.

The findings of the previous phase (i.e., the classifi-
cation algorithm along the tuning parameters) are loaded
into the Model Generation component. During this last
phase, the SafeDroid v2.0 inputs the tuned classifier to
the constructor of the prediction classifier and creates the
prediction model that will be employed in the classifier
component.

3.4. Classification and Report Components. TheClassification
component (CC) works together with the Report component
(RC). The CC is responsible for identifying and detecting
malicious apps, while the RC task is to handle the interaction
with the user. The CC receives the input data (namely,
MD5,.dex) from the Android app and uses the precalculated
feature set of APIs to create the binary feature vector, employ-
ing the functionality of the Feature Extraction component.
The binary vector is finally tested on the prediction model
and a new label is generated for the new app. This output
is used to generate a report, with a feedback to be presented
to the user, by means of the Android application. The report
contains the features that were found to be considered mali-
cious, so that the user can have an understandable feedback
about the label given to the evaluated app. Additionally,
the data extracted from the app are stored in the database
component, in order to be used to update the prediction
model.

3.5. SafeDroid v2.0 Android Application. The RC of the
Android app retrieves the list of already installed applications
on the device and sends the dex file of the objective appli-
cation, along with the application name and the MD5 hash
of the APK to the Classification and Report server. Finally, it
presents the received report from the server to the user of the
Android app.

Security and Communication Networks 9

Table 1: Composition of the datasets used in the experiments. The ratio column is the malicious app ratio in the considered dataset.

app dataset size ben. apps mal. apps ratio APIs
Group 1 29344 kB 428 432 0.50 3491
Group 2 38306 kB 371 211 0.36 7007
Group 3 138613 kB 513 755 0.60 14327
Group 4 201897 kB 138 392 0.75 23229
Group 5 261358 kB 2843 755 0.20 37249
Group 6 313787 kB 1013 1611 0.60 26694
Group 7 342717 kB 1710 1611 0.50 32791
Group 8 451389 kB 3121 1611 0.33 50835
Group 9 972093 kB 3371 2481 0.40 94825

4. Evaluation

This section presents the results of our extensive experiments
performed with our framework, that we recall is fully imple-
mented and already released for further study to the research
community (https://github.com/Dubniak/SafeDroid-v2.0.).

The purpose is to provide evidence about the SafeDroid
v2.0 key characteristics, namely, feasibility of deployment,
low computational cost, and detection accuracy. In particular,
with the term feasibility we mean that the whole mechanism
is actually feasible and easy to use. With low computational
costs, we want to show that the whole detection process,
together with the training and testing phase, is scalable and
can be executed in real time. Finally, to show the detection
accuracy, we want to report real use cases that confirm the
capability of the SafeDroid v2.0 framework to distinguish
between malicious and benign Android apps.

A total of 25,346 applications compose our whole dataset,
out of which 20,208 (79.7%) are benign and 5,138 (20.3%)
are of malicious nature. These applications were used as the
knowledge base for our experiments. Part of our malware
data has been kindly provided by the authors of a prior
piece of research work [26]. The rest of the samples were
collected from malware repositories such as VirusShare,
contagio Mobile, malware.lu and applications dated
between 2012 and 2016. The benign applications were down-
loaded from the official Google Play Store during the year
2013.

4.1. Feasibility of Deployment. The fully functional frame-
work has been implemented and is available to be forked at
the github hosting service. In particular, the versionwe used
for the experiments in this paper has been developed with
SDK v.24 on Android OS 7.0, using the scikit-learn and
the AndroWarn library.

Given a fully functional prototype of the whole frame-
work, wewere able to carefully analyse and evaluate the single
component that constitutes our implementation of SafeDroid
v2.0, conducting a series of experiments. The experiments
were conducted on 9 different input datasets, subsets of our
initial whole dataset, over a series of 3 executions. The input
datasets are detailed in Table 1 andwere crafted to deliberately
differ in both absolute number of apps, balance among
malicious and benign apps, and number of employed APIs.
Moreover, in order to test the feasibility of our framework,

the settings of the execution were different in all sets of
experiments. In this way we were able to acquire metrics
to evaluate the computational costs of each architectural
component and the efficiency of the produced prediction
models on both balanced and unbalanced input datasets. We
have to highlight that, since some of the experiments take a
considerable amount of time, there are many external factors
that influenced the framework, like the network connection
to query the database, the race conditions among threads-
pointers to the database, and so on. All the times we report
in the following, where they are not differently stated, do not
take into account such a fine grained detail, but simply report
the single steps as a whole.

The experiments were conducted on a computing station
with 24 CPUs (Intel� Xeon�) running at 2.76GHz with 64GB
available memory.

We tested our framework on different number of proces-
sors to be able to estimate its overall performance in real-
life scenarios and highlight the effect of parallelization. The
base of our experiment employed 2 cores and doubled up,
until to 16 cores. Table 2 presents the execution time in
seconds to perform the whole Model Generation. It can be
observed that the execution time decreases dramatically as
the number of the employed cores increases. To grasp the
overall improvement, we report the average execution time
utilisation in Table 3. The results report the percentage of
the enhancement of the execution time with respect to the
previous setup (half the cores) andwith respect to the original
setup (2 cores). As the results show, as a harsh estimation,
doubling the number of the cores results in decreasing the
execution time by around 30%, while the overall reduction
time reaches up to 65% for 16 cores.

4.2. Computational Costs. In this section we report our study
to evaluate the computational costs of our SafeDroid v2.0,
studying the time in seconds it takes to go through all the
steps of the framework. In particular, we highlight the timing
of the different phases as well as the improvement in speed
we obtain using the database. To evaluate the framework
in different settings, we designed a battery of tests. The
experiments were conducted for 9 different input datasets
(Table 1) over a series of 3 executions and they were conceived
to highlight the costs of each phase of the framework and to
provide evidences about the actual feasibility of the approach.

10 Security and Communication Networks

Table 2: Empirical time (in seconds) of the overall execution for each group.

app dataset 2 cores 4 cores 8 cores 16 cores
Group 1 210 112 67 38
Group 2 238 145 105 92
Group 3 1208 670 435 352
Group 4 1648 1322 1177 975
Group 5 2168 1790 1641 1314
Group 6 3396 2597 1910 1319
Group 7 4704 2577 1544 1108
Group 8 8610 4855 3293 841
Group 9 22498 15191 9820 7075

Table 3: Utilisation of execution time per core number.

number of
cores relative improvement absolute improvement

2 - -
4 34.7% 34.7%
8 28.5% 52.2%
16 30.4% 65.6%

To evaluate the costs of the Feature –API– Extraction
phase (Section 3.1), which we recall to be based on the
AndroWarn, we report in Table 4 the timing of the 3
executions for each group. The beneficial effects of the use of
a database are all in the reduction of these timings. Moreover,
to have an idea about howmuch the Feature Extraction phase
impacts on the overall timing of the process, we draw in
Figure 4 a plot for each of the 9 groups: they represent the
timing of the single phases of the whole process, together
with the overall timing, to have a grasp about how relevant
such phase is in the whole process. The error bars in the
Y-axis represent the variation between the slowest and the
fastest execution of the several repeated experiments for each
group. We can observe that, for all the groups, the Feature
Extraction phase is always the predominant component for
the overall execution time, being almost always close to 95%
of the overall cost. Moreover, as the size of the apps dataset
increases, the other phase that increases its time consumption
is the Tuning one, where the framework tries different tuning
parameters in order to maximise the results of the different
machine learning algorithms. The Feature Vector Creation
and the Training phase are always very limited in their time
consumption.

We recall that the computational cost of the Feature
Extraction phase is caused by the reverse engineering of the
input apps: for example, in the case of an input of around 1GB
(Group 9 of Table 1), it occupies most of the CPU, reaching
at a peak of almost 21,000 seconds. We can also observe that
the execution time of the Feature Extraction phase follows a
linear increase towards the size of the input dataset.

The above results motivate our decision to include a
database for permanently storing the results of the Feature
Extraction for each app. In this way, themost costly operation
is substituted by a simple database access, reducing by several

0

5000

10000

15000

20000

25000

Feature Vector Creation

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

G
ro

up
 4

G
ro

up
 5

G
ro

up
 6

G
ro

up
 7

G
ro

up
 8

G
ro

up
 9

Feature Extraction
Overall Execution Time Tuning

Training

Figure 4: Comparison between execution timings, with the detailed
time of each single phase. Times are in seconds.

order of magnitude the overall cost. This design choice
follows the initial goal to create a framework that can be
really used to assist security researchers and able to produce
results quickly. We report in Table 5 the comparison between
the overall time execution of the whole generation process,
respectively, without and with the use of the database. In
Figure 5, instead, the overall execution times are compared,
again with and without the employment of the database, in
order to have a visual representation of the improvement.
Thenoticeable difference between the first—duringwhich the
reverse engineering of the input apps is taking place—and
follow-up executions is visible for all sizes of the input.We can
observe that as the size of the dataset to process increases, the
advantage of the database increases even further: for example,
for the smallest dataset (Group 1) it goes from around 5.1
minutes (316 sec.) without the database to 4.5 minutes (278
sec.) with the use of the database, with a saved time of
around 11% of up to almost 92% for the largest dataset (Group
9), from 6.2 hours (22422 sec.) to 28 minutes (1734 sec.).
Then, we can conclude that the adoption of the database
makes extensive use of the framework—even with very large
datasets—possible.

4.3. Detection Accuracy. Next, we explored the achievable
detection rates of our SafeDroid v2.0 framework. The graph

Security and Communication Networks 11

Table 4: Feature Extraction timings for each group of apps. The results consider 3 runs for each group. Times are in seconds.

Average Min Max StDev
Group 1 41.59 32.85 58.14 14.34
Group 2 73.81 58.58 104.22 26.34
Group 3 597.58 301.07 922.16 311.50
Group 4 1414.33 645.07 2489.35 959.40
Group 5 1792.47 1451.24 1990.99 296.83
Group 6 2151.28 1801.20 2801.05 563.28
Group 7 1905.05 1216.81 2703.02 749.16
Group 8 4428.34 3466.56 5729.38 1168.94
Group 9 20734.27 19578.27 22275.95 1389.58

Table 5: Overall execution time comparison, without and with the use of the database. Times are in seconds.

without DB with DB
Average StDev Average StDev saved time

Group 1 316.05 91.08 278.24 76.76 11,96%
Group 2 467.76 148.72 396.30 122.41 15,28%
Group 3 837.53 324.16 245.52 12.66 70,69%
Group 4 1804.24 1075.82 391.67 120.77 78,29%
Group 5 2506.04 447.69 730.24 231.79 70,86%
Group 6 2541.09 579.78 401.92 25.46 84,18%
Group 7 2354.42 708.86 464.69 46.78 80,26%
Group 8 5507.69 827.99 1101.75 582.74 80,00%
Group 9 22442.46 1239.60 1734.36 797.11 92,27%

0

5000

10000

15000

20000

25000

Overall Execution Time
Overall Execution Time with DB

G
ro

up
 1

G
ro

up
 2

G
ro

up
 3

G
ro

up
 4

G
ro

up
 5

G
ro

up
 6

G
ro

up
 7

G
ro

up
 8

G
ro

up
 9

Figure 5: Comparison between the overall execution times, with
and without the use of the feature database. Times are in seconds.

in Figure 6 shows the accuracy rates in terms of false positive
rate, precision, specificity, and F1 values for the three different
modes of execution (Section 3.3). The false positive rate is
the ratio of false positive number over the total number of
malicious apps in the datasets and it shows the percentage
of falsely characterising benign apps as malicious ones. The
specificity shows the proportion of benign malware that
is correctly identified as benign and the precision refers
to the framework ability of correctly identifying malware
samples. The F1 score is used to measure the accuracy of the
prediction model. The framework produced highly accurate
results while itmanaged to confine the false positive rates.The

results are in adequate level, acquiring values up to 99.5% for
the positive indices. It is interesting to observe the framework
behaviour when the input dataset is the group 4. As we recall
fromTable 1, group 4 refers to the highest unbalanced dataset,
which consists of 75% malicious and 25% benign apps. In
this case, the prediction model identified almost 93% of the
cases while the false positive rate climbed up to almost 12.5%.
Overall, the framework scored the highest accuracy for the
optimum feature vector mode of execution.

The ability of the framework to choose the most accurate
classification algorithm among the 6 available candidates can
be observed in Figure 7. For the purpose of this experiment,
we recorded the results for the 9 input datasets in terms of
F1 score. The red colour denotes the framework prediction
for the classification algorithm with the highest accuracy.
The framework successfully chose the optimum classifier in
all experiments, allowing the optimum alternative for the
prediction model. As discussed in Section 3.3, the choice
of the algorithm is taken by comparing the cross-validation
scores that are produced after the exhaustive search of the
tuning parameters for each candidate.The final scores, which
are displayed in Figure 7, refer to the prediction models
that are exported after the training and testing procedure
(Figure 1). As so, the results provide a strong insight on the
versatility of the fine tuning module; the vast majority of the
prediction model scored values above 95%.

In order to observe the ability of the framework to pro-
duce prediction models on big input dataset, we conducted
3 experiments on the full population of the dataset that

12 Security and Communication Networks

false positive
rateF1 score

precision
fa

lse
 p

os
iti

ve
 ra

te
pr

ec
isi

on
specificitysp

ec
ifi

ci
ty

gr
ou

p
1

gr
ou

p
2

gr
ou

p
3

gr
ou

p
4

gr
ou

p
5

gr
ou

p
6

gr
ou

p
7

gr
ou

p
8

gr
ou

p
9

gr
ou

p
1

gr
ou

p
2

gr
ou

p
3

gr
ou

p
4

gr
ou

p
5

gr
ou

p
6

gr
ou

p
7

gr
ou

p
8

gr
ou

p
9

gr
ou

p
1

gr
ou

p
2

gr
ou

p
3

gr
ou

p
4

gr
ou

p
5

gr
ou

p
6

gr
ou

p
7

gr
ou

p
8

gr
ou

p
9

gr
ou

p
1

gr
ou

p
2

gr
ou

p
3

gr
ou

p
4

gr
ou

p
5

gr
ou

p
6

gr
ou

p
7

gr
ou

p
8

gr
ou

p
9

F1
sc

or
e

1,00
0,99
0,98
0,97
0,96
0,95
0,94
0,93
0,92
0,91
0,90

1
0,98
0,96
0,94
0,92

0,9
0,88
0,86
0,84
0,82

0,8

0,20
0,18
0,16
0,14
0,12
0,10
0,08
0,06
0,04
0,02
0,00

1
0,99
0,98
0,97
0,96
0,95
0,94
0,93
0,92

F1 score, false positive rate, precision and specificity values of 3
modes of execution over the same input data-sets

unattended optimum feature vector optimum data-set

Figure 6: Accuracy scores for three different modes of execution: unattended, optimum feature vector, and optimum dataset.

we obtain (25346 apps, 20.3% malicious), for a series of 3
executions.The base hypothesis of our experiment is that the
framework can produce acceptable prediction rates for both
limited and extended feature sets. The choice of the feature
is the key to characterise an app as malicious or benign.
For the purpose of this experiment, the framework created 3
distinctive feature sets, subgroups of the initial set.The length
of the feature sets along the prediction rates is presented in
Table 6. The available feature space for the whole dataset
is around 1.4 billion unique features. In the 3 consecutive
cases, the framework relied on 157, 1,879, and 2,428 features,
respectively, to construct the prediction models. The average
F1 accuracy ranges from 96.9% for 157 features to 98.9% for
2428 features while the false positive rate is constrained in
between 0.6% and 1.4%, respectively. Moreover, the punctual
choice of the most discriminatory features is inferred from
the results; the framework produced results of high accuracy
for a feature set consisting of 157 characteristics of malicious
apps. While the feature set expands, the framework gives
higher accuracy values and lower false positives.

4.4. Performance Comparison. Table 7 compares our pro-
posed solution with the most prominent alternatives as the
state of the art of the literature. All compared frameworks
follow the static analysis approach to produce their results.
The table displays the F1 and False Positive Rate, which are
the most common metrics to measure the performance of a

Table 6: Summary for 25,346 apps and 1,4 billion features.

case features F1 score FPR∗
1 157 0.969 ± 0.01 0.014 ± 0.002
2 1879 0.976 ± 0.009 0.012 ± 0.002
3 2428 0.989 ± 0.006 0.006 ± 0.001
∗FPR: False Positive Rate.

framework, the number of the employed machine learning
algorithms, and, finally, the ability of the framework to be
employed for further security research. The dataset column
refers to the population of the examined applications, while
the malicious column refers to the proportion of malicious
applications within the dataset. We use these two columns to
point out the dataset imbalance in the compared methods.
As we observed, a lower proportion of malware in the dataset
results in a higher F1 accuracy and lower false positive
rate. Feature column introduces the attributes that were
used to examine the nature of the applications. All of the
aforementionedmetrics were employed bymost of the related
researchers and have been evaluated as the best candidates to
measure the real performance of the solutions.

In order to compare the other solutions with our frame-
work, we used the prediction scores that were produced by
using the full dataset with the highest dimensionality of the
feature space (Table 6). Although the number of malicious
applications in our dataset is slightly lower than the average

Security and Communication Networks 13

0,90

0,92

0,94

0,96

0,98

1,00

F1
-m

ea
su

re

A
D

A

D
Tr

ee

SV
M

M
LP

RF
or

es
t

KN
ei

gh
bo

r

(a) Group 1 F1-measure

0,90

0,92

0,94

0,96

0,98

1,00

D
Tr

ee

RF
or

es
t

KN
ei

gh
bo

r

A
D

A

SV
M

M
LP

F1
-m

ea
su

re
(b) Group 2 F1-measure

M
LP

A
D

A

D
Tr

ee

RF
or

es
t

SV
M

KN
ei

gh
bo

r

0,90

0,92

0,94

0,96

0,98

1,00

F1
-m

ea
su

re

(c) Group 3 F1-measure
D

Tr
ee

RF
or

es
t

A
D

A

SV
M

KN
ei

gh
bo

r

M
LP

0,90

0,92

0,94

0,96

0,98

1,00

F1
-m

ea
su

re

(d) Group 4 F1-measure
D

Tr
ee

A
D

A

RF
or

es
t

SV
M

M
LP

KN
ei

gh
bo

r

0,90

0,92

0,94

0,96

0,98

1,00
F1

-m
ea

su
re

(e) Group 5 F1-measure

D
Tr

ee

M
LP

RF
or

es
t

SV
M

M
LP

KN
ei

gh
bo

r

0,90

0,92

0,94

0,96

0,98

1,00

F1
-m

ea
su

re

(f) Group 6 F1-measure

D
Tr

ee

RF
or

es
t

A
D

A

M
LP

SV
M

KN
ei

gh
bo

r

0,90

0,92

0,94

0,96

0,98

1,00

F1
-m

ea
su

re

(g) Group 7 F1-measure

D
Tr

ee

RF
or

es
t

A
D

A

SV
M

M
LP

KN
ei

gh
bo

r

0,90

0,92

0,94

0,96

0,98

1,00

F1
-m

ea
su

re

(h) Group 8 F1-measure

D
Tr

ee

RF
or

es
t

A
D

A

M
LP

SV
M

KN
ei

gh
bo

r

0,90

0,92

0,94

0,96

0,98

1,00
F1

-m
ea

su
re

(i) Group 9 F1-measure

Figure 7: F1-measure obtained by the framework for the 9 input datasets. In red, the classification algorithm is automatically selected by the
framework.

Table 7: Comparison with similar solutions. ML reports the number of tested machine learning algorithms; FSR means further security
research feature. PRM refers to permission based analysis; INT refers to application intent; STR refers to string-based analysis (Section 2).

API based additional dataset mal.
framework features ML FSR size apps F1 FPR
DroidApiMiner [8] — 4 no 19978 19.9% 97.8% 2.2%
OpSec [9] PRM n/a no 1758 79.5% 97.5% 2.2%
DMDAM [10] PRM 15 no 170 41.2% 77.0% n/a
IFE [11] — 1 no 1100 50.0% 98.1% 8%
Anastasia [12] PRM,INT 9 no 29864 62.5% 97.3% 5%
SBMD [13] STR,PMR 6 no 10000 50.0% 97.0% 10%
SeraphimDroid [14] PRM 5 no 400 50.0% 87.1% n/a
SafeDroid v2.0 — 6 yes 25346 40.0% 98.9% 0.6%

14 Security and Communication Networks

number that the other solutions employed, the difference in
the false positive rate is noticeable. Moreover, our method
produced the highest accuracy in terms of F1 score, reaching
up to 98.9%. The comparison table also shows a lack of
out-of-the-box, customisable solutions in the literature: our
framework is the only one available to be employed for
further research activities.

5. Conclusion and Future Work

In this paper we presented SafeDroid v2.0, a complete frame-
work for Android apps, to discriminate benign applications
frommalicious ones. Unlike prior research and other offered
solution in this field, our work introduces an open-source,
easy to deploy, research framework. Our primary intention
was to offer mobile security researchers a technical solution
able to conduct the analysis, the formation of the prediction
models, and the classification of Android applications. The
core of the framework is constituted by machine learning
classifiers that are the base of real-time malware detection
service for Android devices. Our solution introduces a
complete system for static analysis of Android applications,
data extraction and storage, comparison of different machine
learning classifiers and algorithms, as well as visualisation of
the produced results. We also presented a set of experiments
showing that the framework is accurate, fast, scalable, and
easy to use.

As futurework, we aim at implementing a fully automated
framework to make SafeDroid v2.0 self-updating, adding a
new component that will continuously look up for new mal-
ware applications to be analysed and triggers the generation
of a new and updated version of the classifier. Moreover, we
are planning to perform additional experiments employing
different families of malware and different versions of the
same malware, in order to prove that SafeDroid v2.0 can also
be employed to study the evolution of the different malwares
over time. Finally, we are also considering adding another
component to complement the static analysis with a dynamic
analysis of the apps under analysis.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] IDC International Data Corporation, “Smartphone OS Market
Share 2017-Q1,”http://www.idc.com/promo/smartphone-market-
share/os, 2017.

[2] B. Mike, Android’s Piracy Problem Is Forcing Developers To
Give Away Games: ’Alto’s Adventure’ Latest Freebie, 2012.

[3] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the 33rd IEEE

Symposium on Security and Privacy, pp. 95–109, San Francisco,
Calif, USA, May 2012.

[4] J. Oberheide and C.Miller, “Dissecting the android bouncer,” in
Proceedings of the SummerCon2012, New York, NY, USA, 2012.

[5] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin,
and M. Stamp, “A comparison of static, dynamic, and hybrid
analysis for malware detection,” Journal of Computer Virology
and Hacking Techniques, vol. 13, no. 1, pp. 1–12, 2017.

[6] R. Goyal, A. Spognardi, N. Dragoni, and M. Argyriou, “Safe-
Droid: A distributed malware detection service for android,”
in Proceedings of the 9th IEEE International Conference on
Service-Oriented Computing and Applications, SOCA’16, pp. 59–
66, Macau, China, November 2016.

[7] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: auto-
mated security certification of android applications,” CS-TR-
4991, UM Computer Science Department, 2009.

[8] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: mining API-
level features for robust malware detection in android,” in
Security and Privacy in Communication Networks, vol. 127 of
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pp. 86–103,
Springer, 2013.

[9] A. Ali-Gombe, I. Ahmed, G. G. Richard, and V. Roussev,
“OpSeq: android malware fingerprinting,” in Proceedings of
the 5th Program Protection and Reverse Engineering Workshop,
ser.PPREW-5, pp. 7:1–7:12, ACM, New York, NY, USA, Decem-
ber 2015.

[10] A. Bhattacharya and R. T. Goswami, “DMDAM: data mining
based detection of android malware,” in Proceedings of the
First International Conference on Intelligent Computing and
Communication, J. K.Mandal, S. C. Satapathy,M. K. Sanyal, and
V. Bhateja, Eds., pp. 187–194, Springer, Singapore, 2017.

[11] M. Yang and Q. Wen, “Detecting android malware with
intensive feature engineering,” in Proceedings of the 7th IEEE
International Conference on Software Engineering and Service
Science (ICSESS), pp. 157–161, Aug 2016.

[12] H. Fereidooni,M. Conti, D. Yao, andA. Sperduti, “ANASTASIA:
androidmalware detection using static analysis of applications,”
in Proceedings of the 8th IFIP International Conference on
New Technologies, Mobility and Security, NTMS 2016, pp. 1–5,
Larnaca, Cyprus, November 2016.

[13] A. Mart́ın, H. D. Menéndez, and D. Camacho, “String-based
malware detection for android environments,” in Intelligent
Distributed Computing X, vol. 678 of Studies in Computational
Intelligence, pp. 99–108, Springer International Publishing,
Cham, Switzerland, 2017.

[14] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine
learning aided Android malware classification,” Computers and
Electrical Engineering, vol. 61, pp. 266–274, 2017.

[15] Xiangyu-Ju, “Android malware detection through permission
and package,” inProceedings of the 2014 International Conference
onWavelet Analysis and Pattern Recognition, ICWAPR 2014, pp.
61–65, Lanzhou, China, July 2014.

[16] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang,
“DroidEnsemble: Detecting Android Malicious Applications
with Ensemble of String and Structural Static Features,” IEEE
Access, vol. 6, pp. 31798–31807, 2018.

[17] J.-C. Kuester and A. Bauer, “Monitoring real Androidmalware,”
in Runtime Verification, vol. 9333 of Lecture Notes in Computer
Science, pp. 136–152, Springer International Publishing, Cham,
Switzerland, 2015.

http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os

Security and Communication Networks 15

[18] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in
Proceedings of the 1st ACMWorkshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM ’11), pp. 15–26, ACM,
New York, NY, USA, October 2011.

[19] W. Enck, P. Gilbert, S. Han et al., “TaintDroid: an information
flow tracking system for real-time privacy monitoring on
smartphones,” ACM Transactions on Computer Systems, vol. 32,
no. 2, pp. 5:1–5:29, 2014.

[20] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, “DroidNative:
Automating and optimizing detection of Android native code
malware variants,” Computers & Security, vol. 65, pp. 230–246,
2017.

[21] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, andG. Vigna,
“ExecuteThis! Analyzing Unsafe andMalicious Dynamic Code
Loading inAndroidApplications,” inProceedings of theNetwork
and Distributed System Security Symposium, pp. 23–26, San
Diego, Calif, USA, 2014.

[22] J. Yu, Q. Huang, and C. Yian, “DroidScreening: a practical
framework for real-world Android malware analysis,” Security
andCommunicationNetworks, vol. 9, no. 11, pp. 1435–1449, 2016.

[23] C. Bae and S. Shin, “A collaborative approach on host and
network level android malware detection,” Security and Com-
munication Networks, vol. 9, no. 18, pp. 5639–5650, 2016.

[24] T.M.Mitchell,Machine Learning, McGraw-Hill, Inc, New York,
NY, USA, 1st edition, 1997.

[25] P. Srikanth, A. Singh, D. Kumar, A. Nagrare, and V. Angoth,
“A comparison of machine learning classifiers,” in Advanced
Materials and Information Technology Processing, vol. 271-273,
pp. 149–153, Trans Tech Publications, 2011.

[26] H. Kang, J.-W. Jang, A. Mohaisen, and H. K. Kim, “Detecting
and classifying androidmalware using static analysis along with
creator information,” International Journal of Distributed Sensor
Networks, vol. 11, no. 6, Article ID 479174, 2015.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

