409 research outputs found

    Connectivity graph analysis of the auditory resting state network in tinnitus.

    Full text link
    Thirteen chronic tinnitus patients and fifteen age-matched healthy controls were studied on a 3T magnetic resonance imaging (MRI) scanner during resting condition (i.e. eyes closed, no task performance). The auditory resting-state component was selected using an automatic component selection approach. Functional connectivity (correlations/anti-correlations) in the extracted network was portrayed by integrating the independent component analysis (ICA) approach with a graph theory method. Tinnitus and control groups showed different graph connectivity patterns. In the control group, the connectivity graph was divided into two distinct anti-correlated networks. The first one encompassed the auditory cortices and the insula. The second one encompassed frontoparietal and anterior cingulate cortices, brainstem, amygdala, basal ganglia/nucleus accumbens and parahippocampal regions. In the tinnitus group, only one of the two previously described networks was observed, encompassing the auditory cortices and the insula. Direct group comparison showed, in the tinnitus group, an increased functional connectivity between auditory cortices and the left parahippocampal region surviving multiple comparisons. We investigated a possible correlation between four tinnitus relevant measures (tinnitus handicap inventory (THI) and tinnitus questionnaire (TQ) scores, tinnitus duration and tinnitus intensity during the scanning session) and the connectivity pattern in the tinnitus population. We observed a significant positive correlation between the beta values of the posterior cingulate/precuneus region and the THI score. Our results show a modified functional connectivity pattern in tinnitus sufferers and highlight the role of the parahippocampal region in tinnitus physiopathology. They also point out the importance of the activity and connectivity pattern of the posterior cingulate cortex/precuneus region to the development of the tinnitus associated distress. This article is part of a Special Issue entitled: Tinnitus Neuroscience

    The mechanisms of tinnitus: perspectives from human functional neuroimaging

    Get PDF
    In this review, we highlight the contribution of advances in human neuroimaging to the current understanding of central mechanisms underpinning tinnitus and explain how interpretations of neuroimaging data have been guided by animal models. The primary motivation for studying the neural substrates of tinnitus in humans has been to demonstrate objectively its representation in the central auditory system and to develop a better understanding of its diverse pathophysiology and of the functional interplay between sensory, cognitive and affective systems. The ultimate goal of neuroimaging is to identify subtypes of tinnitus in order to better inform treatment strategies. The three neural mechanisms considered in this review may provide a basis for TI classification. While human neuroimaging evidence strongly implicates the central auditory system and emotional centres in TI, evidence for the precise contribution from the three mechanisms is unclear because the data are somewhat inconsistent. We consider a number of methodological issues limiting the field of human neuroimaging and recommend approaches to overcome potential inconsistency in results arising from poorly matched participants, lack of appropriate controls and low statistical power

    The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks

    Get PDF
    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature

    Pinpointing a highly specific pathological functional connection that turns phantom sound into distress

    No full text
    International audienceIt has been suggested that an auditory phantom percept is the result of multiple, parallel but overlapping networks. One of those networks encodes tinnitus loudness and is electrophysiologically separable from a non-specific distress network. The present study investigates how these networks anatomically overlap, what networks are involved and how and when these networks interact. The EEG data of 317 tinnitus patients and 256 healthy subjects were analyzed, using independent component analysis. Results demonstrate that tinnitus is characterized by at least two major brain networks, each consisting of multiple independent components. One network reflects tinnitus distress, while another network reflects the loudness of the tinnitus. The component coherence analysis shows that the independent components that make up the distress and loudness networks communicate within their respective network at several discrete frequencies in parallel. The distress and loudness networks do not intercommunicate for patients without distress, but do when patients are distressed by their tinnitus. The obtained data demonstrate that the components that build up these two separable networks communicate at discrete frequencies within the network, and only between the distress and loudness networks in those patients in whom the symptoms are also clinically linked

    The Distressed Brain: A Group Blind Source Separation Analysis on Tinnitus

    Get PDF
    Background: Tinnitus, the perception of a sound without an external sound source, can lead to variable amounts of distress. Methodology: In a group of tinnitus patients with variable amounts of tinnitus related distress, as measured by the Tinnitus Questionnaire (TQ), an electroencephalography (EEG) is performed, evaluating the patients ’ resting state electrical brain activity. This resting state electrical activity is compared with a control group and between patients with low (N = 30) and high distress (N = 25). The groups are homogeneous for tinnitus type, tinnitus duration or tinnitus laterality. A group blind source separation (BSS) analysis is performed using a large normative sample (N = 84), generating seven normative components to which high and low tinnitus patients are compared. A correlation analysis of the obtained normative components ’ relative power and distress is performed. Furthermore, the functional connectivity as reflected by lagged phase synchronization is analyzed between the brain areas defined by the components. Finally, a group BSS analysis on the Tinnitus group as a whole is performed. Conclusions: Tinnitus can be characterized by at least four BSS components, two of which are posterior cingulate based, one based on the subgenual anterior cingulate and one based on the parahippocampus. Only the subgenual component correlates with distress. When performed on a normative sample, group BSS reveals that distress is characterized by two anterior cingulate based components. Spectral analysis of these components demonstrates that distress in tinnitus is relate

    Prefrontal Cortex Based Sex Differences in Tinnitus Perception: Same Tinnitus Intensity, Same Tinnitus Distress, Different Mood

    Get PDF
    BACKGROUND: Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. METHODOLOGY: The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. CONCLUSIONS: Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC) extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC), parahippocampal (PHC) areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC). The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional imaging studies related to tinnitus

    Blast-Induced Tinnitus: A Combined Behavioral, Memri, And Electrophysiology Study

    Get PDF
    ABSTRACT BLAST-INDUCED TINNITUS: A COMBINED BEHAVIORAL, MEMRE, AND ELECTROPHYSIOLOGY STUDY by JESSICA OUYANG May 2014 Advisor: Drs. Steve Cala & Jinsheng Zhang Major: Physiology Degree: Doctor of Philosophy Tinnitus and hearing loss are the frequent auditory-related co-morbidities of blast trauma. The etiology of blast-induced tinnitus is also muddled by brain mechanisms associated with emotional and cognitive problems such as anxiety, memory loss, and depression. We set out to develop a realistic and ecologically valid model to address changes of cognitive status and psychological state that are associated with blast- induced tinnitus. In this study, 19 adult rats were randomly divided into the sham group (n=6) and the blast group (n=13). Blast exposure (14 psi) was conducted via a shock wave tube to expose the left ears of the rats in the blast group, and a sham exposure was conducted to the rats in the sham group. Blast-induced tinnitus was evaluated with gap detection and pre-pulse inhibition (PPI) acoustic startle reflex paradigms; the changes of thresholds of the hearing was evaluated with auditory brainstem response (ABRs), the change in the level of anxiety was evaluated with elevated plus maze; and the change in the status of memory was evaluated with one-day Morris water maze. To investigate blast-induced neuronal changes in the limbic structures, we utilized MEMRI technique. Obtained with MRIcro, MR intensity signal-to-noise ratios (SNRs) of 83 selected limbic structures were measured to represent the level of synaptic activity. Of the 13 rats that were exposed to blast shock wave, 8 rats developed chronic tinnitus on post-exposure day 35 (PED35) and 5 rats did not. Our results showed that compared to rats in the sham group (n=6), (1) rats in the blast group with or without tinnitus demonstrated higher level of anxiety (p\u3c0.05); (2) rats in the blast group that exhibited behavioral evidences of tinnitus (n=8) demonstrated neuronal hyperactivity in bilateral amygdaloidal complex, specifically bilateral basolateral groups and the left cortical-like group of the amygdala (p\u3c0.05); and (3) rats in the blast group demonstrated neuronal hyperactivity in bilateral nucleus accumbens core (p\u3c0.05). In conclusion, the elevated level of synaptic activity in the bilateral amygdala and nucleus accumbens core indicates central plasticity associated with blast-induced tinnitus

    Tinnitus: animal models and findings in humans

    Get PDF

    The Neural Mechanisms of Tinnitus and Tinnitus Distress

    Get PDF
    corecore