10,985 research outputs found

    Safety impacts of in-car navigation systems

    Get PDF

    Improving Livability Using Green and Active Modes: A Traffic Stress Level Analysis of Transit, Bicycle, and Pedestrian Access and Mobility

    Get PDF
    Understanding the relative attractiveness of alternatives to driving is vitally important toward lowering driving rates and, by extension, vehicle miles traveled (VMT), traffic congestion, greenhouse gas (GHG) emissions, etc. The relative effectiveness of automobile alternatives (i.e., buses, bicycling, and walking) depends on how well streets are designed to work for these respective modes in terms of safety, comfort and cost, which can sometimes pit their relative effectiveness against each other. In this report, the level of traffic stress (LTS) criteria previously developed by two of the authors was used to determine how the streets functioned for these auto alternative modes. The quality and extent of the transit service area was measured using a total travel time metric over the LTS network. The model developed in this study was applied to two transit routes in Oakland, California, and Denver, Colorado

    Analysis of pavement condition survey data for effective implementation of a network level pavement management program for Kazakhstan

    Get PDF
    Pavement roads and transportation systems are crucial assets for promoting political stability, as well as economic and sustainable growth in developing countries. However, pavement maintenance backlogs and the high capital costs of road rehabilitation require the use of pavement evaluation tools to assure the best value of the investment. This research presents a methodology for analyzing the collected pavement data for the implementation of a network level pavement management program in Kazakhstan. This methodology, which could also be suitable in other developing countries’ road networks, focuses on the survey data processing to determine cost-effective maintenance treatments for each road section. The proposed methodology aims to support a decision-making process for the application of a strategic level business planning analysis, by extracting information from the survey data

    Performance Evaluation of Open Graded Base Course with Doweled and Non-Doweled Transverse Joints

    Get PDF
    The objectives of this study were to investigate the performance of 20-year old doweled/non-doweled and dense-graded/permeable base test sections on three concrete pavement segments in Wisconsin: USH 18/151 in Iowa and Dane counties, STH 29 in Brown County, and USH 151 in Columbia and Dane Counties. Five pavement bases were placed including: dense graded, asphalt-stabilized permeable, cement-stabilized permeable, and untreated permeable having two gradation sizes. USH 18/151 test sections had similar performance (PDI) for doweled unsealed pavement on dense and permeable base. Distresses common to all segments included slight to moderate distressed joints/cracks and slight transverse faulting. Asphalt-stabilized permeable base had no slab breakup or surface distresses, however it measured a greater severity of distressed joints and cracks. Non-doweled sections having asphalt-stabilized permeable base and Transverse Inter Channel drains had better performance and ride than the other non-doweled sections. IRI was generally higher on non-doweled pavements, but many doweled sections had an equal roughness to non-doweled sections. Sealed non-doweled joints produced a better performing pavement, however, sealant did not appear to improve ride. STH 29 unsealed sections performed better than the median PDI for the sealed sections. The sealed doweled pavement did perform a little better than the non-doweled section, but the opposite occurred on the non-doweled sections. Sealed doweled joints had a smoother ride than the other combinations. USH 151 test sections found the finer-graded New Jersey permeable base had the smoothest ride when compared to other permeable sections. Asphalt-stabilized permeable base had the roughest ride, and unstabilized and cement-stabilized permeable bases had intermediate values. The average hydraulic conductivity for the unstabilized permeable base was 17,481 feet per day and there appears little variation due to doweling or joint sealant. Deflection load transfer results indicate expected high average values for the doweled sections and fair to poor values for the non-doweled sections. Slab support ratios indicate variable results based on base type and joint reinforcement/sealant. Life-cycle cost analysis found dense-graded base was the least cost among all base alternatives, with a total estimated present-worth life-cycle cost of $665,133 per roadway mile. Untreated and asphalt-stabilized permeable bases were more expensive by 13% and 27%, respectively. Other factors in selecting dense-graded base over permeable base include project drainage conditions set forth in the FDM guidelines an anticipated increase in pavement surface roughness

    Evaluating the Potential Effects of Deicing Salts on Roadside Carbon Sequestration

    Get PDF
    This project sought to document patterns of road deicing salts and the effects of these salts on the amount of carbon being sequestered passively along Montana Department of Transportation roads; it was designed collaboratively with a related roadside project that tested three different highway right-of-way management techniques (mowing height, shrub planting, disturbance) to determine whether they have the capacity to increase soil organic carbon. Our sampling did not reveal elevated salt levels at any of the nine locations sampled at each of the three I-90 sites. The greatest saline concentrations were found at the sample locations farthest from the road. This pattern was consistent across all three sites. The range of soil organic matter (SOM) was broad, from ~1% to >10%. Generally, SOM values were lowest adjacent to the road and highest farthest from the road. We found no or weak evidence of a relationship between our indices of soil salinity and SOM levels, with electrical conductivity, exchangeable calcium, and cation exchange capacity. Results imply that if road deicing salts are altering patterns of roadside SOM and potential carbon sequestration, this effect was not captured by our experimental design, nor did deicing salts appear to have affected roadside vegetation during our most recent sampling effort. Our findings highlight the value of experimentally separating the multiple potentially confounding effects of winter maintenance operations on roadside soils: roads could focus the flow of water, salts, and sands to roadside soils. How these types of mass inputs to roadside soils might influence medium- or long-term carbon dynamics remains an open question, but their fuller characterization and possible flow paths will be essential to clarifying the role of roadside soils in terrestrial soil organic carbon sequestration strategies

    Promoting Bicycle Commuter Safety, Research Report 11-08

    Get PDF
    We present an overview of the risks associated with cycling to emphasize the need for safety. We focus on the application of frameworks from social psychology to education, one of the 5 Es—engineering, education, enforcement, encouragement, and evaluation. We use the structure of the 5 Es to organize information with particular attention to engineering and education in the literature review. Engineering is essential because the infrastructure is vital to protecting cyclists. Education is emphasized since the central focus of the report is safety

    Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology

    Get PDF
    The prominent contradiction between high ground stress and low strength of surrounding rock in deep strata of coal mine leads to large deformation and instability disaster after roadway excavation. In order to grasp the internal deformation of surrounding rock before and after roadway excavation and support in time, this study developed a quasi-distributed large-range strain sensor cable based on weak fiber grating sensing technology, and realized the 1 m-level spacing arrangement of deformation measuring points in surrounding rock. The test performance of the sensor cable is mastered through the indoor calibration test. The test results show that the strain range of the developed strain sensing cable is not less than 0.04, the sensitivity is 1.23 pm/με, and the accuracy level is 0.5. It belongs to the high-precision sensor and has good repeatability and linearity. Field industrial test was carried out in deep rock roadway of No. 4 Coal Mine of Pingdingshan Tian’an Coal Shares The results show that: The strain value of surrounding rock decreases with the increase of hole depth. The strain value of surrounding rock within 4 m is larger, and the strain value outside 7 m is smaller and tends to be stable. The strain of roadway surrounding rock mainly occurs within 30 days after roadway repair, and then the strain increase of roadway surrounding rock gradually decreases and tends to be stable. Taking the rapid convergence position of strain rate to 0 as the boundary of surrounding rock loose zone, the boundary of roadway side and top loose zone is 5 m, and the boundary of shoulder loose zone is 4 m. Through the comprehensive application of weak fiber grating technology and time division multiplexing technology, the strain optical cable greatly improves the multiplexing capacity of optical fiber sensing network and meets the large range and fine online monitoring requirements of surrounding rock deformation monitoring in deep roadway of coal mine. Through technical application, the internal deformation characteristics of surrounding rock of deep roadway in coal mine and the spatio-temporal evolution law of loose circle can be mastered in time, which provides scientific basic data for the stability control decision of surrounding rock of deep roadway

    Recent Advances in Sustainable Winter Road Operations – A Book Proposal

    Get PDF
    Investing in winter transportation operations is essential and beneficial to the public and the economy. The U.S. economy cannot afford the cost of shutting down highways, airports, etc., during winter weather. In the northern U.S. and other cold-climate areas, winter maintenance operations are essential to ensure the safety, mobility, and productivity of transportation systems. Agencies are continually challenged to provide a high level of service and improve safety and mobility in a fiscally and environmentally responsible manner. To this end, it is desirable to use the most recent advances in the application of materials, practices, equipment, and other technologies. Such best practices are expected to improve the effectiveness and efficiency of winter operations, to optimize material usage, and to reduce associated annual spending, corrosion, and environmental impacts. Currently, no professional societies, scientific journals, or textbooks are dedicated solely to sustainable winter road operations, and key information is scattered across a variety of disciplines. The objective of the proposed book is to summarize the best practices and recent advances in sustainable winter road operations for the purposes of education and workforce development. This book is now in press and can be cited as follows: Shi, X., Fu, L. (2017). Sustainable Winter Road Operations (Eds.). ISBN: 978-1-119-18506-2. Wiley-Blackwell

    Experimental study on secondary bearing mechanism of weakly cemented broken rock mass

    Get PDF
    In order to study the secondary bearing mechanism of weakly cemented broken surrounding rock, the surface of granite, limestone and mudstone broken rock samples were poured by cement slurry, and the weakly cemented rock mass was formed by static pressure infiltration method, and then an uniaxial loading test was carried out. The results show that the weakly cemented broken rock mass has a certain bearing capacity, but the bearing capacity is low, and the dispersion is high. The secondary bearing capacity of weakly cemented rock mass is affected by factors such as broken rock strength, rock particle size and rock gradation. The larger the rock particle size and strength are, the higher the secondary bearing capacity of the weakly cemented rock mass is. The average bearing capacity of the mudstone weak cementation specimen is 18.77 kN, and the residual bearing capacity is 1.46 kN, and a dispersion coefficient is 0.34. The average bearing capacity of granite is 343.65 kN, and the residual carrying capacity is 25.81 kN, and a dispersion coefficient is 0.11. The average bearing capacity of limestone is 367.22 kN, and the residual carrying capacity is 22.78 kN, and a dispersion coefficient is 0.3. After a certain grading, the average residual secondary bearing capacity of the weakly cemented rock mass is obviously improved, and the dispersion coefficient of peak bearing capacity is reduced. The grading scheme 1 has an average peak carrying capacity of 330.06 kN, a residual carrying capacity of 34.56 kN, and a dispersion coefficient is 0.07. The averaging scheme 2 has an average peak carrying capacity of 297.8 kN, a residual carrying capacity of 29.86 kN, and a dispersion coefficient is 0.14. The cementation regeneration mechanism of the broken rock mass mainly includes the cement-bonding effect of the cement slurry inside and on the broken rock mass. Under the loaded condition, the internal load-bearing network of the broken rock mass is the main mechanism for the secondary load of the broken rock mass, and the stability of the force-chain network is affected by the constraint. After the loss of the confinement, the force chain network fails, and the residual secondary bearing mechanism of the weakly cemented broken rock mass is transformed into the friction between the broken rock masses in the residual core rock pillar
    • …
    corecore