4 research outputs found

    The Study "Insightroads: Exploration of Data Dissemination Techniques for Ensuring Safety in Vanets"

    Get PDF
    Vehicle Ad Hoc Networks (VANETs) are ad hoc networks created for Intelligent Transportation Systems (ITS) in which vehicles communicate with one another to improve driving effectiveness and traffic safety without depending on a centralised infrastructure. To increase road safety, efficiency, and comfort, these networks allow vehicles to communicate data via sensors, GPS, and communication systems. By assuring accurate message transmission and lowering delivery delays, data dissemination mechanisms used in VANETs serve to further improve driver and passenger safety, productivity, and comfort. The existing literature on Vehicular Ad Hoc Networks (VANETs) includes a variety of proposed mechanisms for data dissemination. This paper aims to conduct literature review to examine the data dissemination techniques for safety applications in VANETs

    An adaptive warning message scheme for emergency vehicles using vehicular ad hoc communication

    Get PDF
    Nowadays, traffic management has been a challenging task due to the growing number of vehicles. More specifically, operation management of Emergency Vehicles (EVs) such as ambulances, police force and fire fighting vehicles require extensive industrial and academic studies. The research community has been placing a great deal of emphasis for reducing the travelling time of the EV between the starting point and the destination point. In the foreseeable future, all vehicles are assumed to be fully equipped with wireless technology. This facilitates communication and coordination between vehicles and traffic lights, and shortens the time needed for EVs to reach their destinations. This paper focuses on developing an efficient broadcast algorithm, namely, Adaptive Warning Message Scheme (AWMS), using Vehicle-to-Vehicle (V2V) communication, to deliver a Warning Message (WM) as quickly as possible to a target traffic light. In the AWMS, a high priority message dissemination is given to WMs, which are responsible for informing the traffic light about any approaching EVs, while a low dissemination priority is assigned to normal Information Messages (IMs), (i.e. messages that carry general information about a vehicle). In addition, the EV direction toward a traffic light is considered in our scheme when broadcasting the WM to reduce the broadcast storm problem. Time delay between two consecutive WMs is calculated based on the EV speed and traffic density. The simulation results have shown that the AWMS has the capacity and ability to disseminate WMs with minimum number of re-transmissions, collision rate and end-to-end delay

    Connected Vehicle Technology: User and System Performance Characteristics

    Get PDF
    The emerging connected vehicle (CV) technology plays a promising role in providing more operable and safer transportation environments. Yet, many questions remain unanswered as to how various user and system characteristics of CV-enabled networks can shape the successful implementation of the technology to maximize the return on investment. This research attempts to capture the effect of multiple factors such as traffic density, market penetration, and transmission range on the communication stability and overall network performance by developing a new CONnectivity ROBustness (CONROB) model. The model was tested with data collected from microscopic simulation of a 195 sq-mile traffic network and showed a potential to capture the effect of such factors on the communication stability in CV environments. The information exchanged among CVs can also be used to estimate traffic conditions in real time by invoking the probe vehicle feature of CV technology. Since factors affecting the connectivity robustness also have an impact on the performance of traffic condition estimation models, a direct relationship between connectivity robustness and traffic condition estimation performance was established. Simulation results show that the CONROB model can be used as a tool to predict the accuracy of the estimated traffic conditions (e.g. travel times), as well as the reliability of such estimates, given specific system characteristics. The optimal deployment of road-side units (RSUs) is another important factor that affects the communication stability and the traffic conditions estimates and reliability. Thus, an optimization approach was developed to identify the optimal RSUs locations with the objective function of maximizing the connectivity robustness. Simulation results for the developed approach show that CONROB model can help identify the optimal RSUs locations. This shows the importance of CONROB model as a planning tool for CV environments. For the individual user performance characteristics, a preliminary driving simulator test bed for CV technology was developed and tested on thirty licensed drivers. Forward collision warning messages were delivered to drivers when predefined time-to-collision values take place. The findings show improved reaction times of drivers when receiving the warning messages which lend credence to the safety benefits of the CV technology
    corecore