3,264 research outputs found

    Visualization of Input Parameters for Stream and Pathline Seeding

    Get PDF
    Uncertainty arises in all stages of the visualization pipeline. However, the majority of flow visualization applications convey no uncertainty information to the user. In tools where uncertainty is conveyed, the focus is generally on data, such as error that stems from numerical methods used to generate a simulation or on uncertainty associated with mapping visualiza-tion primitives to data. Our work is aimed at another source of uncertainty - that associated with user-controlled input param-eters. The navigation and stability analysis of user-parameters has received increasing attention recently. This work presents an investigation of this topic for flow visualization, specifically for three-dimensional streamline and pathline seeding. From a dynamical systems point of view, seeding can be formulated as a predictability problem based on an initial condition. Small perturbations in the initial value may result in large changes in the streamline in regions of high unpredictability. Analyzing this predictability quantifies the perturbation a trajectory is subjugated to by the flow. In other words, some predictions are less certain than others as a function of initial conditions. We introduce novel techniques to visualize important user input parameters such as streamline and pathline seeding position in both space and time, seeding rake position and orientation, and inter-seed spacing. The implementation is based on a metric which quantifies similarity between stream and pathlines. This is important for Computational Fluid Dynamics (CFD) engineers as, even with the variety of seeding strategies available, manual seeding using a rake is ubiquitous. We present methods to quantify and visualize the effects that changes in user-controlled input parameters have on the resulting stream and pathlines. We also present various visualizations to help CFD scientists to intuitively and effectively navigate this parameter space. The reaction from a domain expert in fluid dynamics is also reported. - See more at: http://thesai.org/Publications/ViewPaper?Volume=6&Issue=4&Code=IJACSA&SerialNo=17#sthash.PNlUBslJ.dpu

    Magnitude-based streamlines seed point selection for unsteady flow visualization

    Get PDF
    Flow visualization is a method utilized to obtain information from flow data sets. Proper blood flow visualization can assist surgeons in treating the patients. However, the main problem in visualizing the blood flow inside the aorta is the unsteady blood flow rate. Thus, an unsteady flow visualization method is required to show the blood flow clearly. Unfortunately, streamlines cannot be used by time-dependent flow visualization. This research aims to propose an improvement for the current streamline visualization technique and appearance by implementing an improved streamline generation method based on structured grid vector data to visualize the unsteady flow. The research methodology follows a comparative study method with the Evenly-Spaced Seed Point placement (ESSP) method as the benchmark. Magnitude-Based Seed Point placement (MBSP) and selective streamlines enhancement are introduced to produce longer, uniform, and clutter-free streamlines output. A total of 20 visualization results are produced with different streamlines separation distance. Results are then evaluated by comparing streamlines count and uniformity score. Subsequently, survey and expert reviews are carried out to strengthen the analysis. Survey questions are distributed to respondents that have data visualization knowledge background in order to get feedback related to streamlines uniformity and enhancement. In addition, experts review is conducted to get feedback based on current researches and techniques utilized in the related fields. Results indicate that streamlines count for MBSP are higher, but the differences are neglectable. Uniformity analysis shows good performance; with 80% of the MBSP results have better uniformity. Survey responses show 65% of respondents agreed MBSP results have better uniformity compared to ESSP. Majority of the respondents (92%) agreed that selective streamlines is a better approach. Experts review highlights that MBSP can distribute streamlines better in 3-dimension space compared to ESSP. Two significant findings are identified in this research: magnitude is proven to be an important input to locate seed points; and selective streamlines enhancement is a more effective approach as compared to global streamlines enhancement

    Dynamical Particle Motions in Vortex Flows

    Get PDF
    Circular vortex flows generate interesting self-organizing phenomena of particle motions, that is, particle clustering and classification phenomena. These phenomena result from interaction between vortex dynamics and relaxation of particle velocity due to drag. This chapter introduces particle clustering in stirred vessels and particle classification in Taylor vortex flow based on our previous research works. The first part of this chapter demonstrates and explains a third category of solid-liquid separation physics whereby particles spontaneously localize or cluster into small regions of fluids by taking the clustering phenomena in stirred vessels as an example. The second part of this chapter discusses particle classification phenomena due to shear-induced migration. Finally, this chapter discusses about process intensification utilizing these self-organizing phenomena of particle motions in vortex flows

    Visualizing simulated electrical fields from electroencephalography and transcranial electric brain stimulation: a comparative evaluation

    Get PDF
    pre-printElectrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques

    Visitation Graphs: Interactive Ensemble Visualization with Visitation Maps

    Get PDF
    Modern applications in computational science are increasingly focusing on understanding uncertainty in models and parameters in simulations. In this paper, we describe visitation graphs, a novel approximation technique for the well-established visualization of steady 2D vector field ensembles using visitation maps. Our method allows the efficient and robust computation of arbitrary visitation maps for vector field ensembles. A pre-processing step that can be parallelized to a high degree eschews the needs to store every ensemble member and to re-calculate every time the start position of the visitation map is changed. Tradeoffs between accuracy of generated visitation maps on one side and pre-processing time and storage requirements on the other side can be made. Instead of downsampling ensemble members to a storable size, coarse visitation graphs can be stored, giving more accurate visitation maps while still reducing the amount of data. Thus accurate visitation map creation is possible for ensembles where the traditional visitation map creation is prohibitive. We describe our approach in detail and demonstrate its effectiveness and utility on examples from Computational Fluid Dynamics

    Streamline Tracing and Sensitivity Calculation in Fractured Reservoir with Complex Geometry: Field Application to History Matching and Flood Optimization

    Get PDF
    The popularity of streamline application mainly depends on two aspects: efficient tracing algorithm to generate streamline, and effective flow and transport analysis along streamline. Previous studies proved its applicability for conventional resources such as waterflood in single and dual porosity models. Streamline technology has limited success in extension to fractured reservoir with discrete fracture networks due to lack of efficient tracing method in the complex porous media geometry. Streamline based application such as history matching and rate optimization also has limitation to gas reservoir depletion or fractured reservoir waterflood due to lack of effective streamline-based flow and transport analysis for highly compressible fluid and highly contrasted porous media. In this study, we first develop streamline tracing method in complex geometry such as faults and discrete fractures. The discrete fractures here are depicted by embedded discrete fracture model (EDFM). We are going to propose novel methods to construct boundary layers for fault non-neighbor connections and EDFM non-neighbor connections. The novel methods reduce the treatment of complex grid geometry to a minimum level and honor the flux of each connection. The utility and validity of this proposed approach is demonstrated using both 2D and 3D examples. Second, we propose an amended streamline-based travel time sensitivity formulation. This novel sensitivity formulation has improved accuracy than the legacy one when compared to numerical perturbed sensitivity, thus results in faster data misfit reduction. We also develop general streamline-based bottom hole pressure sensitivity calculation method suitable for highly compressible fluids or complex geometry caused by non-neighbor connections. The bottom hole pressure sensitivity calculation is validated by a successful history matching application to a high pressure high temperature gas reservoir. Finally, we develop a rate allocation optimization method based on fast estimation of oil recovery, which also applies to fractured reservoirs. The oil recovery is estimated along streamline within the drainage volume by the end of optimization period. The injection/production rates are updated to maximize the field oil recovery. The novel optimization method results in better performance than equalizing well pair injection efficiency or equalizing well pair time of flight when applying to a waterflood case in fractured reservoir. Its validation is further established by the waterflood optimization application to a field scale EDFM reservoir. We concluded that our proposed approach of streamline tracing, inversion and optimization algorithm extends streamline technology application to fractured media represented by discrete fracture networks and highly compressible fluid, leading to a highly effective reservoir management tool
    corecore