6 research outputs found

    Analytical evaluation of multicast packet delivery and user clustering schemes in high-speed cellular networks

    Get PDF
    International audienceTransmission on data-oriented radio interfaces of cellular networks has been primarily designed for unicast applications. Nevertheless, unicast may not optimize the resource usage when the same content has to be transmitted to several users in the same cell. In this context, multicast seems to be an efficient means to convey data. In this paper, we develop an analytical model that allows the computation of the mean bitrate for both multicast and multiple-unicast transmission schemes. Furthermore, we propose a multicast transmission scheme called the equal-bitrate (EB) algorithm that allocates bandwidth to mobiles according to their instantaneous channel quality. We compare it to adaptations of the well-known Max-SNR and Round Robin (RR) to multicast. We propose to group users into clusters. The clustering method combines multicast and unicast transmission schemes according to the userÂ’s average channel conditions.We use the analytical model to evaluate the proposed solutions. We compare the resulting performance against pure multicast and multiple-unicast approaches. We show that EB algorithm offers a good trade-off between throughput and fairness. Also, we show that mixed clustering achieves good performance compared to conventional clustering methods

    Scheduling and Link Adaptation for Uplink SC-FDMA Systems - A LTE Case Study

    Get PDF

    Performance evaluation of user mobility on QoS classes in a 3G network

    Get PDF
    The popularity of IP services is increasing and the demand for managing traffic with different QoS classes has become more challenging. The stability of the system is affected by the rate of voice traffic. Mobility allows users to be connected at all time where handover may occur as it is not always possible to be connected to the same base station. Mobility and handover cause severe interference, which affects overall throughput and capacity of the system. The system requires greater capacity with more coverage area. This study deals with the impact of user mobility on voice quality in IP based application in a 3G Network. The aim is to improve the system performance in mixed traffic environment. A mathematical model is used to analyse the impact of using different type of coder on packet end-to-end delay and packet loss. The simulation results indicate that types of coder affect the system performance. Application of scheduling based on weight and load balancing technique can improve the system performance. The deployment of scheduling based on weight and a load balancing technique have been investigated to reduce the end-to-end delay and to improve overall performance in mixed traffic environment. The results under different conditions are analysed and it is found that by applying scheduling scheme, the quality of voice communication can be improved. In addition, load balancing technique can be used to improve the performance of the system. Apart from the decrease in delay, the technique can increase the capacity of the system and the overall stability of the system can be further improved. Finally, network security is another important aspect of network administration. Security policies have to be defined and implemented so that critical sections of the network are protected against unwarranted traffic or unauthorized personnel. The impact of implementing IPSec has been tested for voice communication over IP in a 3G network. Implementing the security protocol does not significantly degrade the performance of the system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Resource Allocation for Cellular/WLAN Integrated Networks

    Get PDF
    The next-generation wireless communications have been envisioned to be supported by heterogeneous networks using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is thus an effective way to promote the evolution of wireless networks. As an essential aspect of the interworking, resource allocation is vital for efficient utilization of the overall resources. Specially, multi-service provisioning can be enhanced with cellular/WLAN interworking by taking advantage of the complementary network strength and an overlay structure. Call assignment/reassignment strategies and admission control policies are effective resource allocation mechanisms for the cellular/WLAN integrated network. Initially, the incoming calls are distributed to the overlay cell or WLAN according to call assignment strategies, which are enhanced with admission control policies in the target network. Further, call reassignment can be enabled to dynamically transfer the traffic load between the overlay cell and WLAN via vertical handoff. By these means, the multi-service traffic load can be properly shared between the interworked systems. In this thesis, we investigate the load sharing problem for this heterogeneous wireless overlay network. Three load sharing schemes with different call assignment/reassignment strategies and admission control policies are proposed and analyzed. Effective analytical models are developed to evaluate the QoS performance and determine the call admission and assignment parameters. First, an admission control scheme with service-differentiated call assignment is studied to gain insights on the effects of load sharing on interworking effectiveness. Then, the admission scheme is extended by using randomized call assignment to enable distributed implementation. Also, we analyze the impact of user mobility and data traffic variability. Further, an enhanced call assignment strategy is developed to exploit the heavy-tailedness of data call size. Last, the study is extended to a multi-service scenario. The overall resource utilization and QoS satisfaction are improved substantially by taking into account the multi-service traffic characteristics, such as the delay-sensitivity of voice traffic, elasticity and heavy-tailedness of data traffic, and rate-adaptiveness of video streaming traffic

    Resource management techniques for sustainable networks with energy harvesting nodes

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICThis dissertation proposes novel techniques for assigning resources of wireless networks by considering that the coverage radii are small, implying that some power consumption sinks not considered so far shouldnow be introduced, and by considering that the devices are battery-powered terminals provided with energy harvesting capabilities. In this framework, two different configurations in terms of harvesting capabilities are considered. First, we assume that the energy source is external and not controllable, e.g. solar energy. In this context, the proposed design should adapt to the energy that is currently being harvested. We also study the effect of having a finite backhaul connection that links the wireless access network with the core network. On the other hand, we propose a design in which the transmitter feeds actively the receivers with energy by transmitting signals that receivers use for recharging their batteries. In this case, the power transfer design should be carried out jointly with the power control strategy for users that receive information as both procedures, transfer of information and transfer of power, are implemented at the transmitter and make use of a common resource, i.e., power. Apart from techniques for assigning the radio resources, this dissertation develops a procedure for switching on and off base stations. Concerning this, it is important to notice that the traffic profile is not constant throughout the day. This is precisely the feature that can be exploited to define a strategy based on a dynamic selection of the base stations to be switched off when the traffic load is low, without affecting the quality experienced by the users. Thanks to this procedure, we are able to deploy smaller energy harvesting sources and smaller batteries and, thus, to reduce the cost of the network deployment. Finally, we derive some procedures to optimize high level decisions of the network operation in which variables from several layers of the protocol stack are involved. In this context, admission control procedures for deciding which user should be connected to which base station are studied, taking into account information of the average channel information, the current battery levels, etc. A multi-tier multi-cell scenario is assumed in which base stations belonging to different tiers have different capabilities, e.g., transmission power, battery size, end energy harvesting source size. A set of strategies that require different computational complexity are derived for scenarios with different user mobility requirements.Aquesta tesis doctoral proposa tècniques per assignar els recursos disponibles a les xarxes wireless considerant que els radis de cobertura són petits, el que implica que altres fonts de consum d’energia no considerades fins al moment s’hagin d’introduir dins els dissenys, i considerant que els dispositius estan alimentats amb bateries finites i que tenen a la seva disposició fonts de energy harvesting. En aquest context, es consideren dues configuracions diferents en funció de les capacitats de l’energia harvesting. En primer lloc, s’assumirà que la font d’energia és externa i incontrolable com, per exemple, l’energia solar. Els dissenys proposats han d’adaptar-se a l’energia que s’està recol·lectant en un precís moment. En segon lloc, es proposa un disseny en el qual el transmissor és capaç d’enviar energia als receptors mitjançant senyals de radiofreqüència dissenyats per aquest fi, energia que és utilitzada per recarregar les bateries. A part de tècniques d’assignació de recursos radio, en aquesta tesis doctoral es desenvolupa un procediment dinàmic per apagar i encendre estacions base. És important notar que el perfil de tràfic no és constant al llarg del dia. Aquest és precisament el patró que es pot explotar per definir una estratègia dinàmica per poder decidir quines estaciones base han de ser apagades, tot això sense afectar la qualitat experimentada pels usuaris. Gràcies a aquest procediment, es possible desplegar fonts d'energy harvesting més petites i bateries més petites. Finalment, aquesta tesis doctoral presenta procediments per optimitzar decisions de nivell més alt que afecten directament al funcionament global de la xarxa d’accés. Per prendre aquestes decisions, es fa ús de diverses variables que pertanyen a diferents capes de la pila de protocols. En aquest context, aquesta tesis aborda el disseny de tècniques de control d’admissió d’usuaris a estacions base en entorns amb múltiples estacions base, basant-se amb la informació estadística dels canals, i el nivell actual de les bateries, entre altres. L'escenari considerat està format per múltiples estacions base, on cada estació base pertany a una família amb diferents capacitats, per exemple, potència de transmissió o mida de la bateria. Es deriven un conjunt de tècniques amb diferents costos computacionals que són d'utilitat per a poder aplicar a escenaris amb diferents mobilitats d’usuaris.Award-winningPostprint (published version

    Sustainable scheduling policies for radio access networks based on LTE technology

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyIn the LTE access networks, the Radio Resource Management (RRM) is one of the most important modules which is responsible for handling the overall management of radio resources. The packet scheduler is a particular sub-module which assigns the existing radio resources to each user in order to deliver the requested services in the most efficient manner. Data packets are scheduled dynamically at every Transmission Time Interval (TTI), a time window used to take the user’s requests and to respond them accordingly. The scheduling procedure is conducted by using scheduling rules which select different users to be scheduled at each TTI based on some priority metrics. Various scheduling rules exist and they behave differently by balancing the scheduler performance in the direction imposed by one of the following objectives: increasing the system throughput, maintaining the user fairness, respecting the Guaranteed Bit Rate (GBR), Head of Line (HoL) packet delay, packet loss rate and queue stability requirements. Most of the static scheduling rules follow the sequential multi-objective optimization in the sense that when the first targeted objective is satisfied, then other objectives can be prioritized. When the targeted scheduling objective(s) can be satisfied at each TTI, the LTE scheduler is considered to be optimal or feasible. So, the scheduling performance depends on the exploited rule being focused on particular objectives. This study aims to increase the percentage of feasible TTIs for a given downlink transmission by applying a mixture of scheduling rules instead of using one discipline adopted across the entire scheduling session. Two types of optimization problems are proposed in this sense: Dynamic Scheduling Rule based Sequential Multi-Objective Optimization (DSR-SMOO) when the applied scheduling rules address the same objective and Dynamic Scheduling Rule based Concurrent Multi-Objective Optimization (DSR-CMOO) if the pool of rules addresses different scheduling objectives. The best way of solving such complex optimization problems is to adapt and to refine scheduling policies which are able to call different rules at each TTI based on the best matching scheduler conditions (states). The idea is to develop a set of non-linear functions which maps the scheduler state at each TTI in optimal distribution probabilities of selecting the best scheduling rule. Due to the multi-dimensional and continuous characteristics of the scheduler state space, the scheduling functions should be approximated. Moreover, the function approximations are learned through the interaction with the RRM environment. The Reinforcement Learning (RL) algorithms are used in this sense in order to evaluate and to refine the scheduling policies for the considered DSR-SMOO/CMOO optimization problems. The neural networks are used to train the non-linear mapping functions based on the interaction among the intelligent controller, the LTE packet scheduler and the RRM environment. In order to enhance the convergence in the feasible state and to reduce the scheduler state space dimension, meta-heuristic approaches are used for the channel statement aggregation. Simulation results show that the proposed aggregation scheme is able to outperform other heuristic methods. When the aggregation scheme of the channel statements is exploited, the proposed DSR-SMOO/CMOO problems focusing on different objectives which are solved by using various RL approaches are able to: increase the mean percentage of feasible TTIs, minimize the number of TTIs when the RL approaches punish the actions taken TTI-by-TTI, and minimize the variation of the performance indicators when different simulations are launched in parallel. This way, the obtained scheduling policies being focused on the multi-objective criteria are sustainable. Keywords: LTE, packet scheduling, scheduling rules, multi-objective optimization, reinforcement learning, channel, aggregation, scheduling policies, sustainable
    corecore