33,470 research outputs found

    Design and operation methods for better performing heat recovery loops

    Get PDF
    Inter-plant integration via a heat recovery loop (HRL) is an economic method for increasing total site process energy efficiency of semi-continuous processes. Results show that both the constant storage temperature approach and variable storage temperature approach have merit. Depending on the mix of source and sink streams attached, it may be advantageous to change the operation of an existing HRL from a constant temperature storage to a variable temperature storage. To realise the full benefits of this change in operation, a redistribution of the existing heat exchanger area may be needed

    Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.

    Get PDF
    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies

    MIRAGE: The data acquisition, analysis, and display system

    Get PDF
    Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements

    The LIFE2 final project report

    Get PDF
    Executive summary: The first phase of LIFE (Lifecycle Information For E-Literature) made a major contribution to understanding the long-term costs of digital preservation; an essential step in helping institutions plan for the future. The LIFE work models the digital lifecycle and calculates the costs of preserving digital information for future years. Organisations can apply this process in order to understand costs and plan effectively for the preservation of their digital collections The second phase of the LIFE Project, LIFE2, has refined the LIFE Model adding three new exemplar Case Studies to further build upon LIFE1. LIFE2 is an 18-month JISC-funded project between UCL (University College London) and The British Library (BL), supported by the LIBER Access and Preservation Divisions. LIFE2 began in March 2007, and completed in August 2008. The LIFE approach has been validated by a full independent economic review and has successfully produced an updated lifecycle costing model (LIFE Model v2) and digital preservation costing model (GPM v1.1). The LIFE Model has been tested with three further Case Studies including institutional repositories (SHERPA-LEAP), digital preservation services (SHERPA DP) and a comparison of analogue and digital collections (British Library Newspapers). These Case Studies were useful for scenario building and have fed back into both the LIFE Model and the LIFE Methodology. The experiences of implementing the Case Studies indicated that enhancements made to the LIFE Methodology, Model and associated tools have simplified the costing process. Mapping a specific lifecycle to the LIFE Model isnā€™t always a straightforward process. The revised and more detailed Model has reduced ambiguity. The costing templates, which were refined throughout the process of developing the Case Studies, ensure clear articulation of both working and cost figures, and facilitate comparative analysis between different lifecycles. The LIFE work has been successfully disseminated throughout the digital preservation and HE communities. Early adopters of the work include the Royal Danish Library, State Archives and the State and University Library, Denmark as well as the LIFE2 Project partners. Furthermore, interest in the LIFE work has not been limited to these sectors, with interest in LIFE expressed by local government, records offices, and private industry. LIFE has also provided input into the LC-JISC Blue Ribbon Task Force on the Economic Sustainability of Digital Preservation. Moving forward our ability to cost the digital preservation lifecycle will require further investment in costing tools and models. Developments in estimative models will be needed to support planning activities, both at a collection management level and at a later preservation planning level once a collection has been acquired. In order to support these developments a greater volume of raw cost data will be required to inform and test new cost models. This volume of data cannot be supported via the Case Study approach, and the LIFE team would suggest that a software tool would provide the volume of costing data necessary to provide a truly accurate predictive model
    • ā€¦
    corecore