242,500 research outputs found

    Extension of Decision Tree Algorithm for Stream Data Mining Using Real Data

    Get PDF
    Recently, because of increasing amount of data in the society, data stream mining targeting large scale data has attracted attention. The data mining is a technology of discovery new knowledge and patterns from the massive amounts of data, and what the data correspond to data stream is data stream mining. In this paper, we propose the feature selection with online decision tree. At first, we construct online type decision tree to regard credit card transaction data as data stream on data stream mining. At second, we select attributes thought to be important for detection of illegal use. We apply VFDT (Very Fast Decision Tree learner) algorithm to online type decision tree construction

    An efficient closed frequent itemset miner for the MOA stream mining system

    Get PDF
    Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient, and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario. The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the IncMine algorithm by Cheng, Ke, and Ng (2008) for mining frequent closed itemsets from data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows how one of the user-provided parameters in the original description can be removed entirely while retaining the performance guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as reported in the original paper, and its ability to handle concept drift.Postprint (published version

    Mining data streams using option trees (revised edition, 2004)

    Get PDF
    The data stream model for data mining places harsh restrictions on a learning algorithm. A model must be induced following the briefest interrogation of the data, must use only available memory and must update itself over time within these constraints. Additionally, the model must be able to be used for data mining at any point in time. This paper describes a data stream classi_cation algorithm using an ensemble of option trees. The ensemble of trees is induced by boosting and iteratively combined into a single interpretable model. The algorithm is evaluated using benchmark datasets for accuracy against state-of-the-art algorithms that make use of the entire dataset

    Scikit-Multiflow: A Multi-output Streaming Framework

    Full text link
    Scikit-multiflow is a multi-output/multi-label and stream data mining framework for the Python programming language. Conceived to serve as a platform to encourage democratization of stream learning research, it provides multiple state of the art methods for stream learning, stream generators and evaluators. scikit-multiflow builds upon popular open source frameworks including scikit-learn, MOA and MEKA. Development follows the FOSS principles and quality is enforced by complying with PEP8 guidelines and using continuous integration and automatic testing. The source code is publicly available at https://github.com/scikit-multiflow/scikit-multiflow.Comment: 5 pages, Open Source Softwar
    • 

    corecore