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Abstract. The data stream model for data mining places harsh restric-
tions on a learning algorithm. A model must be induced following the
briefest interrogation of the data, must use only available memory and
must update itself over time within these constraints. Additionally, the
model must be able to be used for data mining at any point in time.
This paper describes a data stream classification algorithm using an en-
semble of option trees. The ensemble of trees is induced by boosting and
iteratively combined into a single interpretable model. The algorithm is
evaluated using benchmark datasets for accuracy against state-of-the-art
algorithms that make use of the entire dataset.

1 Introduction

The volume of data in real-world problems can overwhelm popular machine
learning algorithms. They do not scale well with the number of instances and
may require more memory than is available. With new data they must re-learn
a new model from scratch. Although incremental algorithms have been explored
in machine learning, the context for their development was never one of having
huge datasets (potentially infinite) and limited memory.

Recently there has been a new focus on algorithms suitable for huge datasets
that learn from a single pass over the data, are restricted in how much memory
they can use, and can be incrementally updated at a later point in time. Ad-
ditionally, they should be able to perform their data mining task at any point
in time. The data model for such an algorithm is termed a data stream, and
streams can be finite or infinite. Algorithms may request a single instance from
the stream or may request a buffer of them (sometimes called a chunk).

The infinite case, sometimes termed online, supposes an endless source of
data being continuously generated. Algorithms designed to handle the infinite
case are naturally able to handle the finite case. However, this case has an added
real time restriction. The data must be processed quickly enough to keep pace
with the incoming flow. If the algorithm is too slow the backlog will build up
and eventually incoming data will be lost. The online case has the potential for
concept drift. If the underlying concept shifts over time, the algorithm should
be capable of adapting as necessary.
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The method proposed in this paper is based on option trees [3]. The learn-
ing scheme is a variant of the ensemble method, where the model maintained
is a single straightforward voting structure. The structure is such that it can
be merged with linear complexity whereas merging regular decision trees is a
multiplicative process [14]. To keep accuracy high, the models are induced via
boosting. To restrict memory usage we introduce a method of pruning the model,
rather than its members, that is simple and fast. The resulting algorithm can be
adjusted according to speed and memory requirements. It has the potential to
follow drifting concepts, although we do not deal with concept drift here.

This paper is organised in the following way; in the next section we outline
our new approach for mining data streams using option trees. In Section 3 we
present the experimental results obtained from our approach. Section 4 details
related work and Section 5 contains concluding remarks.

2 Description of the Algorithm

Option trees [3] are a generalization of the standard decision tree structure.
Multiple options can be explored at a conditional point, rather than the single
path restriction of conventional trees. Figure 1 presents an example option tree.
To classify an example where age = unknown, sex = male, height = 175,
weight = 100 and eyes = brown, one would add the values 0.231 + 0.948 −
0.965−0.296 to reach the sum −0.082. The sum is negative so the negative class
would be assigned to this case.
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Fig. 1. An example option tree
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Fig. 2. Merging option trees

The problem of inducing an option tree from training data can be approached
in many ways. In this paper we use the boosting algorithm introduced by Fre-
und and Mason [7]. They defined so-called alternating decision trees (ADTrees),
option trees generated via boosting.



2.1 Merging

The ability to merge several models into a single equivalent model is a desir-
able property when dealing with ensembles. A single universal model is easier to
maintain and interpret than several disjoint ones. Things can be further compli-
cated if each member is individually weighted. The smaller the merged model
the better it will be for this purpose.

As Quinlan discovered when trying to merge standard decision trees, their
combination is multiplicative [14]. Option trees, however, merge additively in
the worst case. Depending on how much structure is shared, further savings can
be made.

Figure 2 demonstrates the result of merging option trees A and B. The merg-
ing process starts at the root of the trees and works its way down, looking for
any common tests at the same level to merge into one. If any tests match, it
will merge the underlying prediction values by adding them together, and then
merge the subsequent sub-trees. If there is no match, there is no choice but to
add another option branch to the tree containing an unshared sub-tree.

With a limited range of nominal labels available one can see the savings to be
made when common tests involving nominal attributes are merged. The merging
of numeric tests is more troublesome. While there is certainly overlap between
numeric ranges, there appears no obvious way of combining these tests without
discarding information. The rule followed by the merging algorithms used in this
paper is to only merge numeric tests if the split point is identical. As is often
the case with inducing trees from different sub-samples of the data, this can
result in multiple split points that differ ever so slightly. Sophisticated merging
of numeric attributes, however, is not addressed in this paper.

In Figure 2 the only nodes that can be merged are the root nodes. Examina-
tion of the merging process shows that the order of tests in the trees prevents any
further compression of the merged model. Trees A and B share common tests,
but because they are evaluated in different order we fail to merge them. Further
savings can be made by converting to an order-independent representation.

2.2 Flat representation

Each node of a decision tree is considered in the order encountered while travers-
ing down the tree. A node is not considered unless its parents have been evalu-
ated first. Maintaining this order when merging trees causes exponential growth.
Consequently we seek an order-independent representation. The graph we con-
struct is made up of two connected layers. The top layer consists of conditions;
the bottom consists of prediction weights. The structure is no longer a tree as a
prediction node can have multiple parents or no parents at all.

Figure 3 illustrates the result of merging example trees A and B in flattened
form. Converting an option tree into this form is simple—we add all of the
previously unseen condition nodes found in the tree to the top layer, and all of
the prediction nodes to the bottom layer. We link the prediction nodes to each of
the ancestor parent conditions present in the tree. For example, node 5 depends



on test A > x = n and B < y = n in the tree, so we link node 5 to test A > x
and B < y in the flat graph, noting the condition (=y or =n) of the connection.

There is a provision added to the graph construction to make it as compact
as possible—the set of tests linked to a prediction node should be unique. In the
case where adding a prediction node with the same test conditions as an existing
node in the graph, the prediction values are added together rather than adding
a new node to the graph. The ability to do this is the key to being able to merge
the graphs more efficiently than the trees—the fact that nodes 10 and 4 share
identical preconditions is detected despite the fact they are found at different
depths in the original trees.

When represented this way, the structure can efficiently be merged with
option trees or their flattened equivalents. Performing classification with this
structure is a matter of summing all of the prediction nodes whose parent tests
are satisfied. The final prediction sum derived from this is identical to the sum
that would have been obtained by the option trees making up the model.

2.3 Rule representation

Visually, the two-layer graph representation can be hard to interpret. Typically
there are many more prediction nodes than test nodes, and the links between
them form a dense and complex web. To make the model easier for users to
follow, it can instead be represented as a set of voting rules.

Figure 4 shows Figure 3 transformed into a set of voting instructions. Each
prediction node becomes a rule—the prediction value is listed, along with the
conditions required for the value to apply. To make a prediction, the user adds
up values of the rules that hold true.
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Fig. 3. Flattened graph of A + B.
Where there is more than one edge
leading to a predictor node, all of the
tests must be satisfied for the predic-
tion value to apply

Start with (1+6).
Add (2) if A > x.
Add (3) if A <= x.
Add (10+4) if A <= x and B < y.
Add (9) if A > x and B < y.
Add (5) if A <= x and B >= y.
Add (7) if B < y.
Add (8) if B >= y.
If sum < 0 predict negative class,
if sum > 0 predict positive class,
if sum = 0 prediction unknown.

Fig. 4. Voting rules derived from fig-
ure 3. The voting weights correspond to
the labels in figure 3—normally these
would be real-valued numbers

The näıve approach to generating predictions by consulting every rule can be
costly as the model grows. We overcome this problem by converting the model



back into an option tree for prediction. This is achieved by taking the most
frequent test as a root and partitioning into three sets, those for which the test
holds, those for which it does not hold and those that do not test that particular
attribute. The sets are recursively divided down respective paths of the tree.

Conceptually, it helps to rank the rules by their absolute prediction value.
Those rules with larger weights have potentially more influence on the outcome
than smaller weighted rules. This observation suggests a simple pruning tech-
nique.

2.4 Pruning

In general, one would expect a rule with a weight close to zero to have little
influence on a model’s classifications. The only cases where these rules would
make a difference is when the decision is borderline—in which case a small value
may be enough to push over the classification boundary, or when many of them
combine to form a large overall difference.

It is in the fine details that a model is able to describe a complex relation, and
removing some of these details could damage the models performance. However
given a choice between sacrificing the large details versus the small ones the
logical choice is to hold on to the seemingly most important ones. Here we adopt
a simple philosophy: when running out of space, the smallest weighted rules are
the first to go.

Figure 5 justifies this choice. It shows an example of the effect that pruning
has on accuracy when three different removal strategies are used. The strategy
of removing the largest weighted rules first demonstrates a sharp performance
decay, whereas removing the smallest weights first has the least impact on accu-
racy. In fact, there are significant stretches where removing the smallest nodes
has little impact on prediction error—it is apparent that the 600 or so smallest
weights can be removed with virtually no performance loss, as evidenced by the
horizontal stretch at the left hand side of the graph.
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Fig. 5. Effect removal order has on test set accuracy when pruning back a full model
trained on the adult dataset

Also present in the graph is an example of removing nodes in random or-
der. The shape of this curve varies according to the randomization. On average



the accuracy degradation of random removal falls somewhere between the two
extremes of largest-first and smallest-first.

When merging a new model, the operation can be broken down into the
individual insertions of prediction values. To keep the model memory usage in
check, an upper limit on the number of prediction nodes is set. Once this limit
is hit, and the insertion of a new prediction value requires the creation of a
new node, the prediction node with the smallest magnitude is discarded to make
space for the new node. In this way, an upper bound on the memory requirements
for the model is maintained.

2.5 Chunking

1. Initialize global model G
2. Initialize chunk buffer to chunk size
3. While incoming data is available

3.1. Add next instance to chunk buffer
3.2. If chunk buffer is full

3.2.1. Learn a model M from chunk buffer
3.2.2. Merge model M with global model G
3.2.3. Clear chunk buffer

End if
End while

Fig. 6. Chunking algorithm

Figure 6 outlines the algorithm for learning a model from a data stream.
The first two steps prepare for the incoming data stream. Step 3.2.1 employs
the alternating decision tree learning algorithm to induce an option tree from
the most recent chunk of data. The next step carries out a merging operation
to update the overall model. It is during this step that the global model may be
pruned to ensure it does not exceed the maximum allowable size. At any stage
should we wish to perform a classification on an unknown data instance, we can
use the global model resulting from the chunking algorithm.

3 Experiments

Our experiments aim to observe the influence the chunk size, the number of
boosting iterations per chunk, and the maximum number of prediction values
allowed in the model have on classification accuracy, learning speed, and memory
consumption against a finite data stream.

3.1 Datasets and Methodology

To overcome the lack of real data of sufficient size, authors often generate syn-
thetic data sets. Typically the synthetic data is used to present scalability results,



Table 1. Datasets used for the experiments

Dataset Train Test Numeric Nominal

anonymous 32711 5000 0 293
adult 38842 10000 6 8
census-income 249285 50000 8 33
covertype 395141 100000 10 44

prediction accuracy results are rarely reported. We collected the few suitable
datasets we could find, mostly from UCI [2], and synthetically generated some
more. To benchmark our ensemble method we use the WEKA 1 implementa-
tions of C4.5 and ADTree to build a model over the entire data. The datasets
are given in Table 1. The accuracy results are based on an independent test set,
the size of which is listed in the table. Note that the train/test splits are not
the original ones supplied with the datasets—to ensure an equally distributed
sample we randomized the data before splitting it up.

3.2 Results

The speed of model growth is dependent on the chunk size and the number
of boosting iterations. Decreasing the chunk size generates sub-models more
frequently, and increasing boosting iterations creates larger sub-models, both of
which cause the overall model to grow at a faster rate.

Growth curves on datasets are close to linear in the number of training ex-
amples. One point of difference is that the growth of the number of tests varies
on the commonality of tests. Greater numbers of nominal attributes in the data
improve the chance for merging, whereas for numerical attributes splitpoints are
rarely replicated thus reducing the opportunities for merging 2. The results tend
to suggest that although merging of common nodes takes place, it is not very
substantial, hence the almost worst-case linear behaviour.

Assuming an infinite supply of data, it would be ideal to use chunk sizes as
large as possible. This would ensure that training samples are as representative
as possible of the underlying distribution. The two constraints on chunk size
are memory and complexity. The chunk size must be small enough to fit into
memory along with the memory required to train the models. Larger chunk sizes
slow the algorithm’s ability to process data.

In theory, one would assume that in determining chunk size there is a minima—
where below this point insufficient data is supplied to the learning algorithm to
build models representative of the overall problem, and above which fewer and
fewer gains are to be made. This would vary depending on the dataset. Au-
tomatic determination of the minima for a given dataset is a topic for further

1 Waikato Environment for Knowledge Analysis (http://www.cs.waikato.ac.nz/ml)
2 With our policy of requiring identical splitpoints for a merge, there are a theoretically

infinite number of tests available for numeric attributes.



research. One possibility is to race several candidates as in [6]. In this paper we
only investigate the effect of a small number of different fixed chunk sizes.

Figures 7,10,13 and 16 show the effect on prediction accuracy when the chunk
size is varied on four datasets. In all cases 50 boosting iterations were used per
chunk. As expected, smaller chunk sizes lead to more erratic accuracy, and larger
chunks have smoother curves. This effect is partly exaggerated due to the larger-
chunk graphs being plotted with larger horizontal steps. Choosing a chunk size
too low can severely hurt learning performance—the smallest chunk sizes are
the worst performers, except in one case. On covertype, the largest chunk size
reaches the best performance early, but later a strange turn-around occurs.

We only explore this range of chunk sizes because we only have so much data
available, ramping the chunk size too high means the data is quickly exhausted
without providing an appreciation of trends over time. By fixing the chunk size to
4000, we can see the effect of changing the amount of boosting. Figures 8,11,14
and 17 show the effect on prediction accuracy when the number of boosting
iterations ranges from 20 to 160.

In general, the more boosting iterations the more accurate the sub-models,
which leads to better committee performance. Similar to the chunk size, the
committee is starved if the parameter is set too low. On these datasets, boost-
ing 80 times does a reasonable job, with 160 providing little gain. This is not
to say that increasing the boosting iterations further will not improve things
more, just that the gains are diminishing. The boosting parameter is flexible
and can be adjusted according to requirements. Boosting 160 times becomes
quite computationally demanding so we stopped at this point.

Fixing the chunk size to 4000 and the boosting iterations to 80, we investigate
the effect of pruning on the accuracy of the model. In figures 9,12,15 and 18 we
restrict the number of prediction nodes allowed in the model, using the pruning
technique outlined in Section 2.4, and see the effect it has on accuracy.

It is clear from these graphs that setting the memory restrictions too low can
have a serious impact on the learning capacity of the algorithm. At the lowest
memory usage, the error tends to drift upwards over time. It must be considered
that the kind of memory restrictions we are enforcing are very severe—in the
order of kilobytes for storing the models, where modern computing resources
would effortlessly allow many megabytes for model storage.

Table 2 compares the accuracy of our technique against other methods. The
first three columns show the error obtained by training C4.5, boosted C4.5 and
ADTree (both boosted 80 times) respectively on the entire training set. The
fourth and fifth columns (C4.5C, BC4.5C) shows the accuracy of a committee of
C4.5 and boosted C4.5 trees generated under similar conditions to our technique
(chunk size of 4000). The OTC (Option Tree Committee) column shows the error
obtained using our chunking algorithm with no pruning, chunk size 4000 and 80
boosting iterations. Clearly it is not always possible to apply boosting to these
datasets. The DNF results refer to out of memory exceptions at 1GB and cover
an inability to load an entire dataset and an inability to cope with an ever
increasing number of large models.
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Fig. 8. anonymous/boost
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Fig. 10. adult/chunk
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Fig. 11. adult/boost
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Fig. 12. adult/size
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Fig. 13. census/chunk
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Fig. 14. census/boost
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Fig. 17. covertype/boost
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Table 3 shows the corresponding sizes of the models. The size is measured by
the number of rules contained in the model, that is, the total number of leaves in
C4.5, and the number of prediction nodes in the option tree methods. The size
of the ADTree models is constant due to the fixed number of boosting iterations.
The size of the unpruned OTC models are generally larger than the others. The
boosted C4.5 rule sizes were not included but are up to 80 times larger than
their non boosted counterparts.

These results are interesting. First, OTC matches ADTree accuracy on anony-
mous and covertype. It betters C4.5 on the other two datasets. According to
McNemar’s test [4] the differences between C4.5 and OTC on adult and census
are not significant, whereas the differences between C4.5 and ADTree are. C4.5 is
clearly superior to the others on the anonymous and covertype data. The boost-
ing results, although patchy, do indicate that chunking can be more beneficial
than using the entire dataset, which supports the argument for an OTC style
method.

We tested the scalability of our method with synthetic data, the results we
omit for lack of space. The conclusion we could draw from the analysis was that
even when faced with millions of instances OTC scales linearly in run-time and
space requirements. To give a concrete example, on the particular test hardware
(an Athlon XP 1700+) it was possible to learn from over 300 instances per
second, and classify 1000 instances per second after training 1 million instances
with no model size restriction. The model sizes reached several megabytes at the
most.

Table 2. Error on test set

Dataset C4.5 BC4.5 C4.5C BC4.5C ADTree OTC

anonymous 24.60% DNF 26.86% 24.94% 27.20% 27.00%
adult 13.67% 15.11% 14.12% 13.85% 12.92% 13.48%
census-income 4.69% 4.72% 5.44% DNF 4.46% 4.62%
covertype 29.84% DNF 33.10% DNF 34.57% 33.54%

Table 3. Number of rules in model

Dataset C4.5 C4.5C ADTree OTC

anonymous 611 662 201 1170
adult 495 1186 201 1362
census-income 2480 1675 201 9462
covertype 8297 19946 201 15112



4 Related Work

Very large datasets have inspired several interesting systems, mainly based on
decision trees. Mehta et al. made one of the first attempts to scale decision
trees to large datasets with SLIQ [13]. The idea was improved in SPRINT [15].
CLOUDS [1] introduced methods of approximating numeric split points to im-
prove efficiency. RainForest [9] is a framework for further reducing the computa-
tion required, that generalizes to all of these approaches. BOAT [8] reduces the
number of passes required by building from samples, and correcting as necessary.
All of these methods require multiple scans of the data, and are thus not suitable
for data streams.

Domingos and Hulten introduce VFDT [5], a method for building decision
trees from high speed data streams. They use Hoeffding bounds [10] to guarantee
performance. The approach is improved by Jin and Agrawal in [12]. In [11]
Domingos and Hulten go on to claim that any method based on discrete search
can be adapted by their technique.

The approaches most closely related to this paper use ensembles. Street and
Kim propose SEA [16], in which models are bagged over chunks of a data stream
and weighted. Frank et al. [6] boost subsequent models and prune those that fail
to improve performance. Chunk sizes are raced to determine optimal size. None
of these techniques however maintain a single classification model.

5 Conclusions

We have presented an algorithm for mining data streams using option trees. The
method has three correlated parameters, chunk size, number of boosting itera-
tions and model size. Experiments have been performed to observe the influence
these have on classification accuracy, learning times, and memory consumption.

These initial experiments have not determined optimal parameter settings,
indeed these may well be dataset dependent, but generally large chunk sizes
with high numbers of boosting iterations will give rise to good classification
performance. Also, the pruning of small prediction nodes can maintain a small
model without too much loss in predictive accuracy. The maximum memory
allocation investigated in this paper is under 4MB when processing five million
instances, so there is much scope for much greater memory utilisation.

Training models using OTC is linear in the number of instances fulfilling
the scalability requirements of the data stream model. Option trees present a
realistic solution to the problem of mining data streams. They can be boosted
to obtain good performance, merged to maintain a single transparent model
and pruned to fit in available memory. Results from initial experiments are very
encouraging when compared to traditional methods that can view all instances
at once.

There are many avenues for future work to improve the method presented
in this paper. Possible directions to explore include merging numeric attribute
ranges to optimise tests, improving classification time, inducing option trees via
other means, tracking concept drift and dealing with multi-class problems.
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