1,351 research outputs found

    Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Thode, A., Wright, D., & Chapman, R. Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone. The Journal of the Acoustical Society of America, 147(3), (2020): 1897, doi:10.1121/10.0000937.Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is “warping,” a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f  1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.This work was supported by the Office of Naval Research (Task Force Ocean, project N00014-19-1-2627) and by the North Pacific Research Board (project 1810). Original warping developments were supported by the French Delegation Generale de l'Armement

    A new in-situ method to estimate fish target strength reveals high variability in broadband measurements

    Get PDF
    Acknowledgements The authors thank the Greenland Institute of Natural Resources (GINR), the University of Aberdeen, and Marine Alliance for Science and Technology for Scotland (MASTS) for funding this study. MASTS is funded by the Scottish Funding Council (grant no. HR09011) and contributing institutions. Further, they thank GINR for providing access to their facilities.Peer reviewedPublisher PD

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    A model for the simulation of sidescan sonar

    Get PDF
    This thesis presents the development of a computer model for the simulation of the sidescan sonar process. The motivation for the development of this model is the creation of a unique and powerful visualisation tool to improve understanding and interpretation of the sidescan sonar process and the images created by it. Existing models tend to generate graphical or numerical results, but this model produces synthetic sidescan sonar images as the output. This permits the direct visualisation of the influence of individual parameters and features of the sonar process on the sidescan images. The model considers the main deterministic aspects of the underlying physical processes which result in the generation of sidescan sonar images. These include the propagation of the transmitted pulse of acoustic energy through the water column to its subsequent interaction and scattering from the rough seafloor. The directivity and motion characteristics of the sonar transducer are also incorporated. The thesis documents the development of the model to include each of these phenomena and their subsequent effect on the sidescan sonar images. Finally, techniques are presented for the investigation and verification of the synthetic sidescan images produced by the model.Defence Research Agenc

    Abstracts of manuscripts submitted in 1991 for publication

    Get PDF
    This volume contains the abstracts of manuscripts submitted for publication during calendar year 1991 by the staff and students of the Woods Hole Oceanographic Institution. We identify the journal of those manuscripts which are in press or have been published. The volume is intended to be informative, but not a bibliography. The abstracts are listed by title in the Table of Contents and are grouped into one of our five departents, Marine Policy Center, Coastal Research Center, or the student category. An author index is presented in the back to facilitate locating specific papers

    Summary of Research 2000, Department of Mechanical Engineering

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or U.S. Government.This report contains project summaries of the research projects in the Department of Mechanical Engineering. A list of recent publications is also included, which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. Thesis abstracts of students advised by faculty in the Department are also included
    corecore