19,599 research outputs found

    EMS: 3D Eyebrow Modeling from Single-view Images

    Full text link
    Eyebrows play a critical role in facial expression and appearance. Although the 3D digitization of faces is well explored, less attention has been drawn to 3D eyebrow modeling. In this work, we propose EMS, the first learning-based framework for single-view 3D eyebrow reconstruction. Following the methods of scalp hair reconstruction, we also represent the eyebrow as a set of fiber curves and convert the reconstruction to fibers growing problem. Three modules are then carefully designed: RootFinder firstly localizes the fiber root positions which indicates where to grow; OriPredictor predicts an orientation field in the 3D space to guide the growing of fibers; FiberEnder is designed to determine when to stop the growth of each fiber. Our OriPredictor is directly borrowing the method used in hair reconstruction. Considering the differences between hair and eyebrows, both RootFinder and FiberEnder are newly proposed. Specifically, to cope with the challenge that the root location is severely occluded, we formulate root localization as a density map estimation task. Given the predicted density map, a density-based clustering method is further used for finding the roots. For each fiber, the growth starts from the root point and moves step by step until the ending, where each step is defined as an oriented line with a constant length according to the predicted orientation field. To determine when to end, a pixel-aligned RNN architecture is designed to form a binary classifier, which outputs stop or not for each growing step. To support the training of all proposed networks, we build the first 3D synthetic eyebrow dataset that contains 400 high-quality eyebrow models manually created by artists. Extensive experiments have demonstrated the effectiveness of the proposed EMS pipeline on a variety of different eyebrow styles and lengths, ranging from short and sparse to long bushy eyebrows.Comment: To appear in SIGGRAPH Asia 2023 (Journal Track). 19 pages, 19 figures, 6 table

    HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling

    Full text link
    In this work, we tackle the challenging problem of learning-based single-view 3D hair modeling. Due to the great difficulty of collecting paired real image and 3D hair data, using synthetic data to provide prior knowledge for real domain becomes a leading solution. This unfortunately introduces the challenge of domain gap. Due to the inherent difficulty of realistic hair rendering, existing methods typically use orientation maps instead of hair images as input to bridge the gap. We firmly think an intermediate representation is essential, but we argue that orientation map using the dominant filtering-based methods is sensitive to uncertain noise and far from a competent representation. Thus, we first raise this issue up and propose a novel intermediate representation, termed as HairStep, which consists of a strand map and a depth map. It is found that HairStep not only provides sufficient information for accurate 3D hair modeling, but also is feasible to be inferred from real images. Specifically, we collect a dataset of 1,250 portrait images with two types of annotations. A learning framework is further designed to transfer real images to the strand map and depth map. It is noted that, an extra bonus of our new dataset is the first quantitative metric for 3D hair modeling. Our experiments show that HairStep narrows the domain gap between synthetic and real and achieves state-of-the-art performance on single-view 3D hair reconstruction.Comment: CVPR 2023 Highlight, project page: https://paulyzheng.github.io/research/hairstep

    Automatic Animation of Hair Blowing in Still Portrait Photos

    Full text link
    We propose a novel approach to animate human hair in a still portrait photo. Existing work has largely studied the animation of fluid elements such as water and fire. However, hair animation for a real image remains underexplored, which is a challenging problem, due to the high complexity of hair structure and dynamics. Considering the complexity of hair structure, we innovatively treat hair wisp extraction as an instance segmentation problem, where a hair wisp is referred to as an instance. With advanced instance segmentation networks, our method extracts meaningful and natural hair wisps. Furthermore, we propose a wisp-aware animation module that animates hair wisps with pleasing motions without noticeable artifacts. The extensive experiments show the superiority of our method. Our method provides the most pleasing and compelling viewing experience in the qualitative experiments and outperforms state-of-the-art still-image animation methods by a large margin in the quantitative evaluation. Project url: \url{https://nevergiveu.github.io/AutomaticHairBlowing/}Comment: Accepted to ICCV 202

    HairBrush for Immersive Data-Driven Hair Modeling

    Get PDF
    International audienceWhile hair is an essential component of virtual humans, it is also one of the most challenging digital assets to create. Existing automatic techniques lack the generality and flexibility to create rich hair variations, while manual authoring interfaces often require considerable artistic skills and efforts, especially for intricate 3D hair structures that can be difficult to navigate. We propose an interactive hair modeling system that can help create complex hairstyles in minutes or hours that would otherwise take much longer with existing tools. Modelers, including novice users, can focus on the overall hairstyles and local hair deformations, as our system intelligently suggests the desired hair parts. Our method combines the flexibility of manual authoring and the convenience of data-driven automation. Since hair contains intricate 3D structures such as buns, knots, and strands, they are inherently challenging to create using traditional 2D interfaces. Our system provides a new 3D hair author-ing interface for immersive interaction in virtual reality (VR). Users can draw high-level guide strips, from which our system predicts the most plausible hairstyles via a deep neural network trained from a professionally curated dataset. Each hairstyle in our dataset is composed of multiple variations, serving as blend-shapes to fit the user drawings via global blending and local deformation. The fitted hair models are visualized as interactive suggestions that the user can select, modify, or ignore. We conducted a user study to confirm that our system can significantly reduce manual labor while improve the output quality for modeling a variety of head and facial hairstyles that are challenging to create via existing techniques

    RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars

    Full text link
    Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar research. It contains massive data assets, with 243+ million complete head frames, and over 800k video sequences from 500 different identities captured by synchronized multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured by 60 synchronized, high-resolution 2K cameras in 360 degrees. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: we provide annotations with different granularities: cameras' parameters, matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and weaknesses of current methods. RenderMe-360 opens the door for future exploration in head avatars.Comment: Technical Report; Project Page: 36; Github Link: https://github.com/RenderMe-360/RenderMe-36

    DeepSketchHair: Deep Sketch-based 3D Hair Modeling

    Full text link
    We present sketchhair, a deep learning based tool for interactive modeling of 3D hair from 2D sketches. Given a 3D bust model as reference, our sketching system takes as input a user-drawn sketch (consisting of hair contour and a few strokes indicating the hair growing direction within a hair region), and automatically generates a 3D hair model, which matches the input sketch both globally and locally. The key enablers of our system are two carefully designed neural networks, namely, S2ONet, which converts an input sketch to a dense 2D hair orientation field; and O2VNet, which maps the 2D orientation field to a 3D vector field. Our system also supports hair editing with additional sketches in new views. This is enabled by another deep neural network, V2VNet, which updates the 3D vector field with respect to the new sketches. All the three networks are trained with synthetic data generated from a 3D hairstyle database. We demonstrate the effectiveness and expressiveness of our tool using a variety of hairstyles and also compare our method with prior art

    Image-Based Approaches to Hair Modeling

    Get PDF
    Hair is a relevant characteristic of virtual characters, therefore the modeling of plausible facial hair and hairstyles is an essential step in the generation of computer generated (CG) avatars. However, the inherent geometric complexity of hair together with the huge number of filaments of an average human head make the task of modeling hairstyles a very challenging one. To date this is commonly a manual process which requires artist skills or very specialized and costly acquisition software. In this work we present an image-based approach to model facial hair (beard and eyebrows) and (head) hairstyles. Since facial hair is usually much shorter than the average head hair two different methods are resented, adapted to the characteristics of the hair to be modeled. Facial hair is modeled using data extracted from facial texture images and missing information is inferred by means of a database-driven prior model. Our hairstyle reconstruction technique employs images of the hair to be modeled taken with a thermal camera. The major advantage of our thermal image-based method over conventional image-based techniques lies on the fact that during data capture the hairstyle is "lit from the inside": the thermal camera captures heat irradiated by the head and actively re-emitted by the hair filaments almost isotropically. Following this approach we can avoid several issues of conventional image-based techniques, like shadowing or anisotropy in reflectance. The presented technique requires minimal user interaction and a simple acquisition setup. Several challenging examples demonstrate the potential of the proposed approach
    • …
    corecore