123 research outputs found

    Global tracking for an underactuated ships with bounded feedback controllers

    Get PDF
    In this paper, we present a global state feedback tracking controller for underactuated surface marine vessels. This controller is based on saturated control inputs and, under an assumption on the reference trajectory, the closed-loop system is globally asymptotically stable (GAS). It has been designed using a 3 Degree of Freedom benchmark vessel model used in marine engineering. The main feature of our controller is the boundedness of the control inputs, which is an essential consideration in real life. In absence of velocity measurements, the controller works and remains stable with observers and can be used as an output feedback controller. Simulation results demonstrate the effectiveness of this method

    Straight-line path following for asymmetric unmanned platform with disturbance estimation

    Get PDF
    The problem of straight-line path following for asymmetric unmanned platform exposed to unknown disturbances was addressed in this paper. The mathematical model of asymmetric unmanned platform was established and the inputs in sway and yaw directions were decoupled, which facilitated the establishment of control strategy of path following. The guidance law and the cross-track error were derived from the classical line-of-sight (LOS) guidance principle. And the equilibrium point of the cross-track error was proven to be uniformly semiglobally exponentially stable (USGES), which guaranteed the exponential convergence to zero. A new disturbance estimation law was developed by adding a linear item of the estimation error into the classical one, which improved the principle’s precision and sensitivity dramatically. The control strategy was developed based on the integrator backstepping technique and the new disturbance estimation law, which made the equilibrium system to be uniformly globally asymptotically stable (UGAS). Computer simulations were conducted to verify the effectiveness of the estimation and control laws during straight-line path following for asymmetric unmanned platform in the presence of unknown disturbances

    Upravljanje pozicijom električki pokretanog brzog površinskog vozila korištenjem unaprijedne projekcije izlazne povratne veze

    Get PDF
    Robust tracking is an issue of vital practical importance to the ship This paper addresses the design of a trajectory tracking controller for fast underactuated ships in the presence of model uncertainties without velocity measurements in the yaw and surge directions. An observer-based trajectory tracking controller is proposed for the fast underactuated ship model. Then, the dynamic surface control approach is effectively exploited to propose a tracking controller considering the actuator dynamics. Adaptive robust techniques are also adopted to cope with the parametric and non-parametric uncertainties in the fast underactuated ship model. A Lyapunov-based stability analysis is utilised to guarantee that tracking and state estimation errors are uniformly ultimately bounded. Simulation results are presented to illustrate the feasibility and efficiency of the proposed controller.Robusno praćenje je pitanje od vitalnog praktičnog značaja za brod. Ovaj se rad bavi projektiranjem regulatora za praćenje trajektorije za brze podaktuirane brodove s modelima nesigurnosti bez mjerenja brzine u smjerovima zaošijanja i uzdužnog napredovanja. Regulator za praćenje putanje zasnovan na observeru predložen je za brz podaktuiran model broda. Upravljanje površinskom dinamikom je učinkovito iskorišteno kako bi se predložio regulatora za praćenje trajektorije s obzirom na dinamiku aktuatora. Također su primjenjene adaptivne robusne tehnike kako bi se nosile sa parametarskim i neparametarskim nesigurnostima u modelu brzog podaktuiranoga broda. Analiza stabilnosti temeljena na Lyapunovu se koristi kako bi se zajamčilo da se pogreške praćenja i estimacije stanja adaptivne robusne tehnike također usvajaju kako bi se nosile s parametarskim i neparametarskim nesigurnostima u brzom neaktivnom brodskom modelu. Analiza stabilnosti temeljena na Lyapunovu se koristi kako bi se zajamčilo da su pogreške praćenja i procjene stanja jednoliko konačno ograničene. Prikazani su simulacijski rezultati koji ilustriraju izvedivost i učinkovitost predloženog regulatora

    A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations

    Get PDF
    Publisher’s embargo period: Embargo set on 01.03.2019 by SR (TIS)

    Fuzzy-Based Optimal Adaptive Line-of-Sight Path Following for Underactuated Unmanned Surface Vehicle with Uncertainties and Time-Varying Disturbances

    Get PDF
    This paper investigates the path following control problem for an underactuated unmanned surface vehicle (USV) in the presence of dynamical uncertainties and time-varying external disturbances. Based on fuzzy optimization algorithm, an improved adaptive line-of-sight (ALOS) guidance law is proposed, which is suitable for straight-line and curve paths. On the basis of guidance information provided by LOS, a three-degree-of-freedom (DOF) dynamic model of an underactuated USV has been used to design a practical path following controller. The controller is designed by combining backstepping method, neural shunting model, neural network minimum parameter learning method, and Nussbaum function. Neural shunting model is used to solve the problem of “explosion of complexity,” which is an inherent illness of backstepping algorithm. Meanwhile, a simpler neural network minimum parameter learning method than multilayer neural network is employed to identify the uncertainties and time-varying external disturbances. In particular, Nussbaum function is introduced into the controller design to solve the problem of unknown control gain coefficient. And much effort is made to obtain the stability for the closed-loop control system, using the Lyapunov stability theory. Simulation experiments demonstrate the effectiveness and reliability of the improved LOS guidance algorithm and the path following controller

    Course Control of Underactuated Ship Based on Nonlinear Robust Neural Network Backstepping Method

    Get PDF
    The problem of course control for underactuated surface ship is addressed in this paper. Firstly, neural networks are adopted to determine the parameters of the unknown part of ideal virtual backstepping control, even the weight values of neural network are updated by adaptive technique. Then uniform stability for the convergence of course tracking errors has been proven through Lyapunov stability theory. Finally, simulation experiments are carried out to illustrate the effectiveness of proposed control method

    Formation Control of Unmanned Surface Vehicles with Sensing Constraints Using Exponential Remapping Method

    Get PDF
    This paper presents a formation control strategy for unmanned surface vehicles (USVs) with sensing constraints moving in a leader-follower formation. Each USV is assumed to be equipped with a vision-based sensor, which is able to get the line-of-sight (LOS) range and bearing information. Most existing literature assumes that the USVs in formation control are with no sensing limitations or with 360-degree sensing fields; however, in our research, the vision-based sensor’s capability is restricted due to limited Field of View (FOV) and visual range. We consider that each USV in formation problem is equipped with a sector-like sensing field sensor for the leader-follower formation in two-dimensional space. The formation controller is developed by employing backstepping control technique and exponential remapping. The backstepping controller is designed to stabilize the triangular formation of three USVs, and the proposed exponential remapping method is to deal with the sector-like sensing constraint problem. Comparative analysis with three exponential remapping methods using numerical simulations is given to demonstrate the effectiveness of the proposed method

    Ship Course Keeping Using Different Sliding Mode Controllers

    Get PDF
    This study addresses three sliding mode heading controllers for dealing with uncertain wave disturbances. A nonlinear steering model is derived, and the feedback linearization method is chosen to simplify the nonlinear system in this study. The adaptive method and disturbance observer technique are proposed for course keeping and ensuring robust performance of the time varying wave moment and actuator dynamics. Finally, the simulation results on a navy ship illustrate the effectiveness of the presented control algorithms for course keeping
    corecore