585 research outputs found

    Monotone Grid Drawings of Planar Graphs

    Full text link
    A monotone drawing of a planar graph GG is a planar straight-line drawing of GG where a monotone path exists between every pair of vertices of GG in some direction. Recently monotone drawings of planar graphs have been proposed as a new standard for visualizing graphs. A monotone drawing of a planar graph is a monotone grid drawing if every vertex in the drawing is drawn on a grid point. In this paper we study monotone grid drawings of planar graphs in a variable embedding setting. We show that every connected planar graph of nn vertices has a monotone grid drawing on a grid of size O(n)×O(n2)O(n)\times O(n^2), and such a drawing can be found in O(n) time

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    Straightening out planar poly-line drawings

    Full text link
    We show that any yy-monotone poly-line drawing can be straightened out while maintaining yy-coordinates and height. The width may increase much, but we also show that on some graphs exponential width is required if we do not want to increase the height. Likewise yy-monotonicity is required: there are poly-line drawings (not yy-monotone) that cannot be straightened out while maintaining the height. We give some applications of our result.Comment: The main result turns out to be known (Pach & Toth, J. Graph Theory 2004, http://onlinelibrary.wiley.com/doi/10.1002/jgt.10168/pdf

    Strongly Monotone Drawings of Planar Graphs

    Get PDF
    A straight-line drawing of a graph is a monotone drawing if for each pair of vertices there is a path which is monotonically increasing in some direction, and it is called a strongly monotone drawing if the direction of monotonicity is given by the direction of the line segment connecting the two vertices. We present algorithms to compute crossing-free strongly monotone drawings for some classes of planar graphs; namely, 3-connected planar graphs, outerplanar graphs, and 2-trees. The drawings of 3-connected planar graphs are based on primal-dual circle packings. Our drawings of outerplanar graphs are based on a new algorithm that constructs strongly monotone drawings of trees which are also convex. For irreducible trees, these drawings are strictly convex

    Strictly convex drawings of planar graphs

    Full text link
    Every three-connected planar graph with n vertices has a drawing on an O(n^2) x O(n^2) grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on O(n) x O(n) grids. More generally, a strictly convex drawing exists on a grid of size O(W) x O(n^4/W), for any choice of a parameter W in the range n<W<n^2. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.Comment: 20 pages, 13 figures. to be published in Documenta Mathematica. The revision includes numerous small additions, corrections, and improvements, in particular: - a discussion of the constants in the O-notation, after the statement of thm.1. - a different set-up and clarification of the case distinction for Lemma
    • …
    corecore