562 research outputs found

    Hypothesis-driven Online Video Stream Learning with Augmented Memory

    Full text link
    The ability to continuously acquire new knowledge without forgetting previous tasks remains a challenging problem for computer vision systems. Standard continual learning benchmarks focus on learning from static iid images in an offline setting. Here, we examine a more challenging and realistic online continual learning problem called online stream learning. Like humans, some AI agents have to learn incrementally from a continuous temporal stream of non-repeating data. We propose a novel model, Hypotheses-driven Augmented Memory Network (HAMN), which efficiently consolidates previous knowledge using an augmented memory matrix of "hypotheses" and replays reconstructed image features to avoid catastrophic forgetting. Compared with pixel-level and generative replay approaches, the advantages of HAMN are two-fold. First, hypothesis-based knowledge consolidation avoids redundant information in the image pixel space and makes memory usage far more efficient. Second, hypotheses in the augmented memory can be re-used for learning new tasks, improving generalization and transfer learning ability. Given a lack of online incremental class learning datasets on video streams, we introduce and adapt two additional video datasets, Toybox and iLab, for online stream learning. We also evaluate our method on the CORe50 and online CIFAR100 datasets. Our method performs significantly better than all state-of-the-art methods, while offering much more efficient memory usage. All source code and data are publicly available at https://github.com/kreimanlab/AugMe

    ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain

    Get PDF
    We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we describe a novel deep network architecture for computing compact temporal content hashes (TCHs) from audio-visual streams with durations of minutes or hours. Our TCHs are sensitive to accidental or malicious content modification (tampering) but invariant to the codec used to encode the video. This is necessary due to the curatorial requirement for archives to format shift video over time to ensure future accessibility. Second, we describe how the TCHs (and the models used to derive them) are secured via a proof-of-authority blockchain distributed across multiple independent archives. We report on the efficacy of ARCHANGEL within the context of a trial deployment in which the national government archives of the United Kingdom, Estonia and Norway participated.Comment: Accepted to CVPR Blockchain Workshop 201

    Lossy Compression of Climate Data Using Convolutional Autoencoders

    Get PDF
    • …
    corecore