22,302 research outputs found

    Introducing Molly: Distributed Memory Parallelization with LLVM

    Get PDF
    Programming for distributed memory machines has always been a tedious task, but necessary because compilers have not been sufficiently able to optimize for such machines themselves. Molly is an extension to the LLVM compiler toolchain that is able to distribute and reorganize workload and data if the program is organized in statically determined loop control-flows. These are represented as polyhedral integer-point sets that allow program transformations applied on them. Memory distribution and layout can be declared by the programmer as needed and the necessary asynchronous MPI communication is generated automatically. The primary motivation is to run Lattice QCD simulations on IBM Blue Gene/Q supercomputers, but since the implementation is not yet completed, this paper shows the capabilities on Conway's Game of Life

    Differentiable Programming Tensor Networks

    Full text link
    Differentiable programming is a fresh programming paradigm which composes parameterized algorithmic components and trains them using automatic differentiation (AD). The concept emerges from deep learning but is not only limited to training neural networks. We present theory and practice of programming tensor network algorithms in a fully differentiable way. By formulating the tensor network algorithm as a computation graph, one can compute higher order derivatives of the program accurately and efficiently using AD. We present essential techniques to differentiate through the tensor networks contractions, including stable AD for tensor decomposition and efficient backpropagation through fixed point iterations. As a demonstration, we compute the specific heat of the Ising model directly by taking the second order derivative of the free energy obtained in the tensor renormalization group calculation. Next, we perform gradient based variational optimization of infinite projected entangled pair states for quantum antiferromagnetic Heisenberg model and obtain start-of-the-art variational energy and magnetization with moderate efforts. Differentiable programming removes laborious human efforts in deriving and implementing analytical gradients for tensor network programs, which opens the door to more innovations in tensor network algorithms and applications.Comment: Typos corrected, discussion and refs added; revised version accepted for publication in PRX. Source code available at https://github.com/wangleiphy/tensorgra
    corecore