19,740 research outputs found

    STORAGE TECHNOLOGY AND THE ENVIRONMENT

    Get PDF
    A dynamic framework is presented for analyzing regulations affecting the use of spoilage-reducing inputs with potential negative environmental effects, such as pesticides, growth regulators, chemical preservatives, and irradiation. Such regulations change intertemporal consumption patterns as well as total output. Consumers may benefit from restrictions on storage technology, giving them a reason to support regulation even when it may not be warranted to correct environmental externalities. Static analyses do not take into account changes in intertemporal consumption, and thus may give misleading depictions of the effects of imposing new regulations. Implications of the framework for development and trade policy are discussed, as are extensions to cases of uncertainty and multiple time periods.Environmental Economics and Policy,

    Integrated grain storage - technology transfer for organic farming

    Get PDF
    The attached document is the final report of the Defra Project OF0176. Demand for organic grain continues to grow and currently in the UK much has to be imported to satisfy the market. Expansion of UK production, together with continued imports, will see an increase in the need for effective grain storage using organic methods to preserve the quality of this valuable commodity. The objectives of this project were to conduct a desk study review to: 1) Highlight the main grain storage problems experienced by organic growers in the UK. 2) Bring together in a more convenient form technical information already available that will enable growers to tackle these problems more successfully. 3) Identify areas of current storage technology requiring a minimum of modification to ensure a smooth transfer from the conventional to the organic sector. 4) Identify areas where appropriate organic alternatives to conventional storage procedures do not exist that will require further research and development to find replacements. The following have been identified as areas requiring further research and development that are likely to provide important opportunities for improving the storage of organic grain: • Store structure cleaning, including the effectiveness of vacuum cleaning and steam treatments, and the feasibility of using diatomaceous earths to control invertebrate pests. • Energy efficient drying and cooling systems, and consider the use of renewable energy sources including solar and wind power or the processing of waste products and energy crops. • More effective invertebrate pest monitoring through improvements in sampling strategies, together with enhanced trap design and the incorporation of lures. • Disinfestation using grain cleaners and hot air driers. • Biological control for store structure treatments. This will require work to assess the effectiveness of naturally occurring biological control agents to treat residual infestations hidden in empty grain store structures. Strategies will need to be developed to encourage the development and conservation of beneficial invertebrates in stores, including the possible use of natural semiochemicals to manipulate their behaviour. • Biological control for surface infestations of grain. As well as looking at the practicality of using top-dressing or bait trap application techniques to control grain surface infestations in cooled bins, there is a need to develop effective methods for the removal of beneficial invertebrates from the grain immediately before it is marketed. A more detailed Executive Summary can be found at the top of the main report

    Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology

    Get PDF
    open4noIn this paper an overview of Vanadium Redox Flow Battery technologies, architectures, applications and power electronic interfaces is given. These systems show promising features for energy storage in smart grid applications, where the intermittent power produced by renewable sources must meet strict load requests and economical opportunities. This paper reviews the vanadium-based technology for redox flow batteries and highlights its strengths and weaknesses, outlining the research lines that aim at taking it to full commercial success.openSpagnuolo, Giovanni, Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni;Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni; Spagnuolo, Giovann

    New Materials and New Configurations for Advanced Electrochemical Capacitors

    Get PDF
    Today, electrochemical capacitors (ECs) have the potential to emerge as a promising energy storage technology. The weakness of EC systems is certainly the limited energy density, which restricts applications to power delivery over only few seconds. As a consequence, many research efforts are focused on designing new materials to improve energy and power densities. These are reviewed below

    Passive storage technologies

    Get PDF
    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters

    Data storage technology comparisons

    Get PDF
    The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels
    • …
    corecore