7 research outputs found

    Decoder-driven mode decision in a block-based distributed video codec

    Get PDF
    Distributed Video Coding (DVC) is a video coding paradigm in which the computational complexity is shifted from the encoder to the decoder. DVC is based on information theoretic results suggesting that, under ideal conditions, the same rate-distortion performance can be achieved as for traditional video codecs. In practice however, there is still a significant performance gap between the two coding architectures. One of the main reasons for this gap is the lack of multiple coding modes in current DVC solutions. In this paper, we propose a block-based distributed video codec that supports three coding modes: Wyner-Ziv, skip, and intra. The mode decision process is entirely decoder-driven. Skip blocks are selected based on the estimated accuracy of the side information. The choice between intra and Wyner-Ziv coding modes is made on a rate-distortion basis, by selecting the coding mode with the lowest rate while assuring equal distortion for both modes. Experimental results illustrate that the proposed block-based architecture has some advantages over classical bitplane-based approaches. Introducing skip and intra coded blocks yields average bitrate gains of up to 33.7% over our basic configuration supporting Wyner-Ziv mode only, and up to 29.7% over the reference bitplane-based DISCOVER codec

    Flexible distribution of complexity by hybrid predictive-distributed video coding

    Get PDF
    There is currently limited flexibility for distributing complexity in a video coding system. While rate-distortion-complexity (RDC) optimization techniques have been proposed for conventional predictive video coding with encoder-side motion estimation, they fail to offer true flexible distribution of complexity between encoder and decoder since the encoder is assumed to have always more computational resources available than the decoder. On the other hand, distributed video coding solutions with decoder-side motion estimation have been proposed, but hardly any RDC optimized systems have been developed. To offer more flexibility for video applications involving multi-tasking or battery-constrained devices, in this paper, we propose a codec combining predictive video coding concepts and techniques from distributed video coding and show the flexibility of this method in distributing complexity. We propose several modes to code frames, and provide complexity analysis illustrating encoder and decoder computational complexity for each mode. Rate distortion results for each mode indicate that the coding efficiency is similar. We describe a method to choose which mode to use for coding each inter frame, taking into account encoder and decoder complexity constraints, and illustrate how complexity is distributed more flexibly

    Stopping criterions for turbo coding in a Wyner-Ziv video codec

    No full text
    Distributed video coding (DVC) targets video coding applications with low encoding complexity by generating a prediction of the video signal at the decoder. One of the most common architectures uses turbo codes to correct errors in this prediction. Unfortunately, a rigorous analysis of turbo coding in the context of DVC is missing. We have targeted one particular aspect of turbo coding: the stopping criterion. The stopping criterion indicates whether decoding was successful, i.e., whether the errors in the prediction signal have been corrected. In this paper we describe and compare several stopping criterions known from the field of channel coding and criterions currently used in DVC. As our results suggest the choice of the stopping criterion has a significant impact on the overall video-coding performance. Moreover, we have found that there are even better performing criterions than those currently used in DVC

    Ein Beitrag zur Pixel-basierten Verteilten Videocodierung: Seiteninformationsgenerierung, WZ-Codierung und flexible Decodierung

    Get PDF
    Moderne Anwendungsszenarien, wie die individuelle Übertragung von Videodaten zwischen mobilen Endgeräten, stellen neue Herausforderungen an das Videoübertragungssystem. Hierbei liegt ein besonderer Fokus auf der geringen Komplexität des Videoencoders. Diese Anforderung kann mit Hilfe der Verteilten Videocodierung erfüllt werden. Im Fokus der vorliegenden Arbeit liegen die sehr geringe Encoderkomplexität sowie auch die Steigerung der Leistungsfähigkeit und die Verbesserung der Flexibilität des Decodierungsprozesses. Einer der wesentlichen Beiträge der Arbeit bezieht sich auf die Verbesserung der Seiteninformationsqualität durch temporale Interpolation
    corecore