3 research outputs found

    A computationally efficient crack detection approach based on deep learning assisted by stockwell transform and linear discriminant analysis

    Get PDF
    This paper presents SpeedyNet, a computationally efficient crack detection method. Rather than using a computationally demanding convolutional neural network (CNN), this approach made use of a simple neural network with a shallow architecture augmented by a 2D Stockwell transform for feature transformation and linear discriminant analysis for feature reduction. The approach was employed to classify images with minute cracks under three simulated noisy conditions. Using time–frequency image transformation, feature conditioning and a fast deep learning-based classifier, this method performed better in terms of speed, accuracy and robustness compared to other image classifiers. The performance of SpeedyNet was compared to that of two popular pre-trained CNN models, Xception and GoogleNet, and the results demonstrated that SpeedyNet was superior in both classification accuracy and computational speed. A synthetic efficiency index was then defined for further assessment. Compared to GoogleNet and the Xception models, SpeedyNet enhanced classification efficiency at least sevenfold. Furthermore, SpeedyNet’s reliability was demonstrated by its robustness and stability when faced with network parameter and input image uncertainties including batch size, repeatability, data size and image dimensions

    Is EEG a Useful Examination Tool for Diagnosis of Epilepsy and Comorbid Psychiatric Disorders?

    Get PDF
    Diagnosis of epilepsy usually involves interviewing the patients and the individuals who witnessed the seizure. An electroencephalogram (EEG) adds useful information for the diagnosis of epilepsy when epileptic abnormalities emerge. EEG exhibits nonlinearity and weak stationarity. Thus, nonlinear EEG analysis may be useful for clinical application. We examined only about English language studies of nonlinear EEG analysis that compared normal EEG and interictal EEG and reported the accuracy. We identified 60 studies from the public data of Andrzejak 2001 and two studies that did not use the data of Andrzejak 2001. Comorbid psychiatric disorders in patients with epilepsy were not reported in nonlinear EEG analysis except for one case series of comorbid psychotic disorders. Using a variety of feature extraction methods and classifier methods, we concluded that the studies that used the data of Andrzejak 2001 played a valuable role in EEG diagnosis of epilepsy. In the future, according to the evolution of artificial intelligence, deep learning, new nonlinear analysis methods, and the EEG association with the rating scale of the quality of life and psychiatric symptoms, we anticipate that EEG diagnosis of epilepsy, seizures, and comorbid psychiatric disorders in patients with epilepsy will be possible

    An improved GBSO-TAENN-based EEG signal classification model for epileptic seizure detection.

    Get PDF
    Detection and classification of epileptic seizures from the EEG signals have gained significant attention in recent decades. Among other signals, EEG signals are extensively used by medical experts for diagnosing purposes. So, most of the existing research works developed automated mechanisms for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. Thus, the proposed work intends to develop an automated epileptic seizure detection system with an improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique is used to filter the input signals and the relevant set of features are extracted from the normalized output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm Optimization (GBSO) technique is employed to select the optimal features by computing the best fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence algorithms, such as preprocessing, optimization, and classification, are used in the literature to identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization approaches are reduced convergence rates and higher computational complexity. Furthermore, the problems with machine learning approaches include a significant method complexity, intricate mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models might dramatically improve disease detection accuracy while decreasing complexity of system along with time consumption as compared to the prior techniques. By using the proposed methodology, the overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% and G-mean of 98.9% values
    corecore