75,901 research outputs found

    Learning Co-Sparse Analysis Operators with Separable Structures

    Get PDF
    In the co-sparse analysis model a set of filters is applied to a signal out of the signal class of interest yielding sparse filter responses. As such, it may serve as a prior in inverse problems, or for structural analysis of signals that are known to belong to the signal class. The more the model is adapted to the class, the more reliable it is for these purposes. The task of learning such operators for a given class is therefore a crucial problem. In many applications, it is also required that the filter responses are obtained in a timely manner, which can be achieved by filters with a separable structure. Not only can operators of this sort be efficiently used for computing the filter responses, but they also have the advantage that less training samples are required to obtain a reliable estimate of the operator. The first contribution of this work is to give theoretical evidence for this claim by providing an upper bound for the sample complexity of the learning process. The second is a stochastic gradient descent (SGD) method designed to learn an analysis operator with separable structures, which includes a novel and efficient step size selection rule. Numerical experiments are provided that link the sample complexity to the convergence speed of the SGD algorithm.Comment: 11 pages double column, 4 figures, 3 table

    Adaptive Importance Sampling for Performance Evaluation and Parameter Optimization of Communication Systems

    Get PDF
    We present new adaptive importance sampling techniques based on stochastic Newton recursions. Their applicability to the performance evaluation of communication systems is studied. Besides bit-error rate (BER) estimation, the techniques are used for system parameter optimization. Two system models that are analytically tractable are employed to demonstrate the validity of the techniques. As an application to situations that are analytically intractable and numerically intensive, the influence of crosstalk in a wavelength-division multiplexing (WDM) crossconnect is assessed. In order to consider a realistic system model, optimal setting of thresholds in the detector is carried out while estimating error rate performances. Resulting BER estimates indicate that the tolerable crosstalk levels are significantly higher than predicted in the literature. This finding has a strong impact on the design of WDM networks. Power penalties induced by the addition of channels can also be accurately predicted in short run-time

    A control algorithm for autonomous optimization of extracellular recordings

    Get PDF
    This paper develops a control algorithm that can autonomously position an electrode so as to find and then maintain an optimal extracellular recording position. The algorithm was developed and tested in a two-neuron computational model representative of the cells found in cerebral cortex. The algorithm is based on a stochastic optimization of a suitably defined signal quality metric and is shown capable of finding the optimal recording position along representative sampling directions, as well as maintaining the optimal signal quality in the face of modeled tissue movements. The application of the algorithm to acute neurophysiological recording experiments and its potential implications to chronic recording electrode arrays are discussed
    corecore