1,256 research outputs found

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Intelligent signal processing for digital healthcare monitoring

    Get PDF
    Ein gesunder Gang ist ein komplexer Prozess und erfordert ein Gleichgewicht zwischen verschiedenen neurophysiologischen Systemen im Körper und gilt als wesentlicher Indikator für den physischen und kognitiven Gesundheitszustand einer Person. Folglich würden Anwendungen im Bereich der Bioinformatik und des Gesundheitswesens erheblich von den Informationen profitieren, die sich aus einer längeren oder ständigen Überwachung des Gangs, der Gewohnheiten und des Verhaltens von Personen unter ihren natürlichen Lebensbedingungen und bei ihren täglichen Aktivitäten mit Hilfe intelligenter Geräte ergeben. Vergleicht man Trägheitsmess- und stationäre Sensorsysteme, so bieten erstere hervorragende Möglichkeiten für Ganganalyseanwendungen und bieten mehrere Vorteile wie geringe Größe, niedriger Preis, Mobilität und sind leicht in tragbare Systeme zu integrieren. Die zweiten gelten als der Goldstandard, sind aber teuer und für Messungen im Freien ungeeignet. Diese Arbeit konzentriert sich auf die Verbesserung der Zeit und Qualität der Gangrehabilitation nach einer Operation unter Verwendung von Inertialmessgeräten, indem sie eine neuartige Metrik zur objektiven Bewertung des Fortschritts der Gangrehabilitation in realen Umgebungen liefert und die Anzahl der verwendeten Sensoren für praktische, reale Szenarien reduziert. Daher wurden die experimentellen Messungen für eine solche Analyse in einer stark kontrollierten Umgebung durchgeführt, um die Datenqualität zu gewährleisten. In dieser Arbeit wird eine neue Gangmetrik vorgestellt, die den Rehabilitationsfortschritt anhand kinematischer Gangdaten von Aktivitäten in Innen- und Außenbereichen quantifiziert und verfolgt. In dieser Arbeit wird untersucht, wie Signalverarbeitung und maschinelles Lernen formuliert und genutzt werden können, um robuste Methoden zur Bewältigung von Herausforderungen im realen Leben zu entwickeln. Es wird gezeigt, dass der vorgeschlagene Ansatz personalisiert werden kann, um den Fortschritt der Gangrehabilitation zu verfolgen. Ein weiteres Thema dieser Arbeit ist die erfolgreiche Anwendung von Methoden des maschinellen Lernens auf die Ganganalyse aufgrund der großen Datenmenge, die von den tragbaren Sensorsystemen erzeugt wird. In dieser Arbeit wird das neuartige Konzept des ``digitalen Zwillings'' vorgestellt, das die Anzahl der verwendeten Wearable-Sensoren in einem System oder im Falle eines Sensorausfalls reduziert. Die Evaluierung der vorgeschlagenen Metrik mit gesunden Teilnehmern und Patienten unter Verwendung statistischer Signalverarbeitungs- und maschineller Lernmethoden hat gezeigt, dass die Einbeziehung der extrahierten Signalmerkmale in realen Szenarien robust ist, insbesondere für das Szenario mit Rehabilitations-Gehübungen in Innenräumen. Die Methodik wurde auch in einer klinischen Studie evaluiert und lieferte eine gute Leistung bei der Überwachung des Rehabilitationsfortschritts verschiedener Patienten. In dieser Arbeit wird ein Prototyp einer mobilen Anwendung zur objektiven Bewertung des Rehabilitationsfortschritts in realen Umgebungen vorgestellt

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    A machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients

    Get PDF
    Machine learning methods have been widely used for gait assessment through the estimation of spatio-temporal parameters. As a further step, the objective of this work is to propose and validate a general probabilistic modeling approach for the classification of different pathological gaits. Specifically, the presented methodology was tested on gait data recorded on two pathological populations (Huntington’s disease and post-stroke subjects) and healthy elderly controls using data from inertial measurement units placed at shank and waist. By extracting features from group-specific Hidden Markov Models (HMMs) and signal information in time and frequency domain, a Support Vector Machines classifier (SVM) was designed and validated. The 90.5% of subjects was assigned to the right group after leave-one-subject-out cross validation and majority voting. The long-term goal we point to is the gait assessment in everyday life to early detect gait alterations

    A Framework for Human Motion Strategy Identification and Analysis

    Get PDF
    The human body has many biomechanical degrees of freedom and thus multiple movement strategies can be employed to execute any given task. Automated identification and classification of these movement strategies have potential applications in various fields including sports performance research, rehabilitation, and injury prevention. For example, in the field of rehabilitation, the choice of movement strategy can impact joint loading patterns and risk of injury. The problem of identifying movement strategies is related to the problem of classifying variations in the observed motions. When differences between two movement trajectories performing the same task are large, they are considered to be different movement strategies. Conversely, when the differences between observed movements are small, they are considered to be variations of the same movement strategy. In the simplest scenario a movement strategy can represent a cluster of similar movement trajectories, but in more complicated scenarios differences in movements could also lie on a continuum. The goal of this thesis is to develop a computational framework to automatically recognize different movement strategies for performing a task and to identify what makes each strategy different. The proposed framework utilizes Gaussian Process Dynamical Models (GPDM) to convert human motion trajectories from their original high dimensional representation to a trajectory in a lower dimensional space (i.e. the latent space). The dimensionality of the latent space is determined by iteratively increasing the dimensionality until the reduction in reconstruction error between iterations becomes small. Then, the lower dimensional trajectories are clustered using a Hidden Markov Model (HMM) clustering algorithm to identify movement strategies in an unsupervised manner. Next, we introduce an HMM-based technique for detecting differences in signals between two HMM models. This technique is used to compare latent space variables between the low-dimensional trajectory models as well as differences in degrees-of-freedom (DoF) between the corresponding high-dimensional (original) trajectory models. Then, through correlating latent variable and DoF differences movement synergies are discovered. To validate the proposed framework, it was tested on 3 different datasets – a synthetic dataset, a real labeled motion capture dataset, and an unlabeled motion capture dataset. The proposed framework achieved higher classification accuracy against competing algorithms (Joint Component Vector and Kinematic Synergies) where labels were known apriori. Additionally, the proposed algorithm showed that it was able to discover strategies that were not known apriori and how the strategies differed

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy
    corecore