1,880 research outputs found

    Stochastic blockmodels and community structure in networks

    Full text link
    Stochastic blockmodels have been proposed as a tool for detecting community structure in networks as well as for generating synthetic networks for use as benchmarks. Most blockmodels, however, ignore variation in vertex degree, making them unsuitable for applications to real-world networks, which typically display broad degree distributions that can significantly distort the results. Here we demonstrate how the generalization of blockmodels to incorporate this missing element leads to an improved objective function for community detection in complex networks. We also propose a heuristic algorithm for community detection using this objective function or its non-degree-corrected counterpart and show that the degree-corrected version dramatically outperforms the uncorrected one in both real-world and synthetic networks.Comment: 11 pages, 3 figure

    Estimation in a Binomial Stochastic Blockmodel for a Weighted Graph by a Variational Expectation Maximization Algorithm

    Get PDF
    Stochastic blockmodels have been widely proposed as a probabilistic random graph model for the analysis of networks data as well as for detecting community structure in these networks. In a number of real-world networks, not all ties among nodes have the same weight. Ties among networks nodes are often associated with weights that differentiate them in terms of their strength, intensity, or capacity. In this paper, we provide an inference method through a variational expectation maximization algorithm to estimate the parameters in binomial stochastic blockmodels for weighted networks. To prove the validity of the method and to highlight its main features, we set some applications of the proposed approach by using some simulated data and then some real data sets. Stochastic blockmodels belong to latent classes models. Classes defines a node's clustering. We compare the clustering found through binomial stochastic blockmodels with the ones found fitting a stochastic blockmodel with Poisson distributed edges. Inferred Poisson and binomial stochastic blockmodels mainly differs. Moreover, in our examples, the statistical error is lower for binomial stochastic blockmodels

    Model-based clustering for populations of networks

    Get PDF
    Until recently obtaining data on populations of networks was typically rare. However, with the advancement of automatic monitoring devices and the growing social and scientific interest in networks, such data has become more widely available. From sociological experiments involving cognitive social structures to fMRI scans revealing large-scale brain networks of groups of patients, there is a growing awareness that we urgently need tools to analyse populations of networks and particularly to model the variation between networks due to covariates. We propose a model-based clustering method based on mixtures of generalized linear (mixed) models that can be employed to describe the joint distribution of a populations of networks in a parsimonious manner and to identify subpopulations of networks that share certain topological properties of interest (degree distribution, community structure, effect of covariates on the presence of an edge, etc.). Maximum likelihood estimation for the proposed model can be efficiently carried out with an implementation of the EM algorithm. We assess the performance of this method on simulated data and conclude with an example application on advice networks in a small business.Comment: The final (published) version of the article can be downloaded for free (Open Access) from the editor's website (click on the DOI link below

    Dynamic degree-corrected blockmodels for social networks: A nonparametric approach

    Get PDF
    A nonparametric approach to the modelling of social networks using degree-corrected stochastic blockmodels is proposed. The model for static network consists of a stochastic blockmodel using a probit regression formulation, and popularity parameters are incorporated to account for degree heterogeneity. We specify a Dirichlet process prior to detect community structure as well as to induce clustering in the popularity parameters. This approach is flexible yet parsimonious as it allows the appropriate number of communities and popularity clusters to be determined automatically by the data. We further discuss and implement extensions of the static model to dynamic networks. In a Bayesian framework, we perform posterior inference through MCMC algorithms. The models are illustrated using several real-world benchmark social networks
    • …
    corecore