8,690 research outputs found

    A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA

    Get PDF
    Long memory plays an important role in many fields by determining the behaviour and predictability of systems; for instance, climate, hydrology, finance, networks and DNA sequencing. In particular, it is important to test if a process is exhibiting long memory since that impacts the accuracy and confidence with which one may predict future events on the basis of a small amount of historical data. A major force in the development and study of long memory was the late Benoit B. Mandelbrot. Here we discuss the original motivation of the development of long memory and Mandelbrot's influence on this fascinating field. We will also elucidate the sometimes contrasting approaches to long memory in different scientific communitiesComment: 40 page

    Heavy-tailed Distributions In Stochastic Dynamical Models

    Full text link
    Heavy-tailed distributions are found throughout many naturally occurring phenomena. We have reviewed the models of stochastic dynamics that lead to heavy-tailed distributions (and power law distributions, in particular) including the multiplicative noise models, the models subjected to the Degree-Mass-Action principle (the generalized preferential attachment principle), the intermittent behavior occurring in complex physical systems near a bifurcation point, queuing systems, and the models of Self-organized criticality. Heavy-tailed distributions appear in them as the emergent phenomena sensitive for coupling rules essential for the entire dynamics

    Aging renewal theory and application to random walks

    Full text link
    The versatility of renewal theory is owed to its abstract formulation. Renewals can be interpreted as steps of a random walk, switching events in two-state models, domain crossings of a random motion, etc. We here discuss a renewal process in which successive events are separated by scale-free waiting time periods. Among other ubiquitous long time properties, this process exhibits aging: events counted initially in a time interval [0,t] statistically strongly differ from those observed at later times [t_a,t_a+t]. In complex, disordered media, processes with scale-free waiting times play a particularly prominent role. We set up a unified analytical foundation for such anomalous dynamics by discussing in detail the distribution of the aging renewal process. We analyze its half-discrete, half-continuous nature and study its aging time evolution. These results are readily used to discuss a scale-free anomalous diffusion process, the continuous time random walk. By this we not only shed light on the profound origins of its characteristic features, such as weak ergodicity breaking. Along the way, we also add an extended discussion on aging effects. In particular, we find that the aging behavior of time and ensemble averages is conceptually very distinct, but their time scaling is identical at high ages. Finally, we show how more complex motion models are readily constructed on the basis of aging renewal dynamics.Comment: 21 pages, 7 figures, RevTe
    • …
    corecore