6,362 research outputs found

    A computational model of evolution: haploidy versus diploidy

    Get PDF
    In this paper, the study of diploidy is introduced like and important mechanism for memory reinforcement in artificial environments where adaptation is very important. The individuals of this ecosystem are able to genetically "learn" the best behaviour for survival. Critical changes, happening in the environmental conditions, require the presence of diploidy to ensure the survival of species. By means of new gene-dominance configurations, a way to shield the individuals from erroneous selection is provided. These two concepts appear like important elements for artificial systems which have to evolve in environments with some degree of instability.Publicad

    Bio-inspired vision-based leader-follower formation flying in the presence of delays

    Get PDF
    Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles) to date. Towards this goal, we make three contributions in this paper: (i) we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii) we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii) unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents

    A hybrid multiagent approach for global trajectory optimization

    Get PDF
    In this paper we consider a global optimization method for space trajectory design problems. The method, which actually aims at finding not only the global minimizer but a whole set of low-lying local minimizers(corresponding to a set of different design options), is based on a domain decomposition technique where each subdomain is evaluated through a procedure based on the evolution of a population of agents. The method is applied to two space trajectory design problems and compared with existing deterministic and stochastic global optimization methods

    Analysis of some global optimization algorithms for space trajectory design

    Get PDF
    In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of Ā²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

    Optimal design for a NEO tracking spacecraft formation

    Get PDF
    The following paper presents the design and methodology for developing an optimal set of spacecraft orbits for a NEO tracking mission. The spacecraft is designed to fly in close formation with the asteroid, avoiding the nonlinear gravity field produced by the asteroid. A periodic orbit is developed, and the initial conditions are optimized by use of a global optimizer for constrained nonlinear problems. The asteroid Apophis (NEO 2004 MN4) was used as the case study due the potential impact with Earth in 2036, and the need for more accurate ephemerides

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60
    • ā€¦
    corecore