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Abstract—The following paper presents the design and 
methodology for developing an optimal set of spacecraft orbits 
for a NEO tracking mission. The spacecraft is designed to fly in 
close formation with the asteroid, avoiding the nonlinear 
gravity field produced by the asteroid. A periodic orbit is 
developed, and the initial conditions are optimized by use of a 
global optimizer for constrained nonlinear problems. The 
asteroid Apophis (NEO 2004 MN4) was used as the case study 
due the potential impact with Earth in 2036, and the need for 
more accurate ephemerides. 

I. INTRODUCTION 
HE existence of asteroids and comets are nothing new 

to science. As the planets formed and their orbits began 
to stabilize, the collision rate among the drifting asteroids 
decreased dramatically, however has in no way stopped. As 
the population and occupied surface of the Earth increases, 
the impact of even a relatively small asteroid could be 
devastating. An asteroid spanning 200 m in diameter, for 
example, can produce a crater 4 km in size, assuming it only 
hits land and not water. The larger classes of asteroids, those 
over 1 km in diameter, are considered to be a global threat 
[1]. While various methods of asteroid deviation are being 
investigated, it is equally, if not more important to be able to 
identify and track, with a high degree of accuracy, the 
numerous Near Earth Objects (NEO) that exist in our solar 
system [2], [3]. 

In tracking an object, it is important to have an orbit that 
is in relative proximity to the asteroid at all times. On-board 
measuring systems, such as laser and radar tracking 
instruments determine the distance between the spacecraft 
and a particular spot on the surface of the asteroid. In the 
case of multiple spacecraft, and/or multiple readings by the 
same spacecraft over time, triangulation techniques can be 
easily applied to determine the ephemerides of the asteroid 
with a high degree of accuracy.  

This paper presents the design and optimization of a set of 
orbits to allow a spacecraft to fly in formation with Apophis, 
orbiting around the Sun. The asteroid Apophis was chosen 
as the test case based on the popularity of this particular 
asteroid in the field today due to two possible collisions with 
Earth in 2036. While the cumulative probability of impact is 
small, only 2.2e-5 according the NASA Near Earth Object 
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Program [4], it highlights the lack of both quality and 
quantity of tracking measurements available. With the 
majority of data gained from Earth-based observation, there 
is a growing need for high accuracy, longer term 
measurements from a space-based platform. 

Ideally the spacecraft should fly in formation with the 
asteroid at an almost constant distance from it. Finding the 
optimal set of initial conditions that provide a periodic 
motion with constant distance is can be formulated as a 
constrained global optimization problem. 

A black box containing a model of the problem under 
investigation was programmed for the orbit of a single 
spacecraft flying in formation with the NEO. A hybrid 
deterministic-stochastic approach based on behaviorism was 
then used to characterize the search space and to find the 
desired set of initial conditions. 

II. SIMULATION MODELS 
The following section describes the dynamical models 

used in simulating the orbit of a formation of spacecraft 
about a NEO, in this case Apophis. 

A. Asteroid Model 
In the case of Apophis, current analysis data is based on 7 

radar delay and Doppler measurements, and 731 optical 
observations over a period of 2.4 years [4]. Table 1 and Fig. 
1 give the physical data and orbit diagram respectively. The 
physical dimensions are calculated assuming an ellipsoid 
model for the asteroid based on the mass and rotational 
velocity where 1 2 3r r r≥ ≥ . 
 

TABLE 1 
PHYSICAL DATA OF APOPHIS 99942 

Dimensions (m) Mass 
(kg) r1 r2 r3 

Rotational 
velocity (µrad/s) 

4.6E+10 226.3 160.0 113.1 5.7 
 

In a related study on a NEO deviation strategy [5], an 
analysis of the dynamical environment of Apophis was 
conducted in order to determine the feasibility of having the 
spacecraft orbit the asteroid using only it’s gravitation field. 
The model also compared the effects of third-body 
perturbations from the Sun and Apophis on the spacecraft. 

It was found that the perturbations near Apophis are either 
highly chaotic, or too weak relative to the solar effects to 
allow a spacecraft to easily orbit the asteroid. 
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Fig. 1. Orbits of Earth (blue/thin), Venus (red/thin) and Apophis 
(bolded/green), showing the physical locations of each on the date 13 April 
2036 08:53 GMT (one of the possible impact dates). All units are measured 
in standard astronomical units (AU) using the heliocentric Earth-equatorial 
reference frame. 

 
An alternative approach is to fly the spacecraft in close 

formation with Apophis; as such, the spacecraft orbits 
around the Sun with the asteroid, but is not affected by its 
presence. In order to avoid unwanted perturbations caused 
by the asteroid, the minimum distance was set equal to the 
sphere of influence (SOI) of the gravity field of the asteroid. 
In a two-body problem, the sphere of influence occurs at the 
point where the gravitation field of the first body, e.g. the 
Sun, is equal to that of the second body, e.g. Apophis. 
Outside this area, the dominant gravitation force is the Sun.  

B. Equations of Motion 
The formation orbit can be thought of as a small orbit 

orbiting within a larger one. The smaller orbit orbits relative 
to a reference point, which in turn orbits around the Sun (see 
Fig. 2).  

 
Fig. 2. Illustration of a chief orbit and a relative deputy spacecraft orbit 
flying in formation at two instants in time, t and (t+∆t). The vector from the 
sun to the chief spacecraft in inertial coordinates is given by rc, and from 
the sun to the formation, or deputy, spacecraft by rd. 

 
This type of formation is referred to as a chief-deputy 

configuration. The chief is simply the reference point on the 
chief orbit, and can be either a virtual point in space or an 
actual spacecraft. In this case study, the chief is the asteroid 
Apophis, and the deputy is the tracking spacecraft. 

Let’s assume the only forces acting on the spacecraft are 
those produced by the gravity field of the Sun, then the 

relative equations of motion for the spacecraft in formation 
are given by, 
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where rc and 2 2 2( )d cr r x y z= + + +  are the vectors 
from the Sun to the formation spacecraft, and to the asteroid 
respectively, µ is the gravitational constant of the Sun, f�  is 

the angular rate of change of the orbit, and { }x y z   
denote the relative rotating coordinate system, called a Hill 
reference frame measured in the radial x, transversal y and 
normal z directions.  

As can be clearly seen, these equations are inherently 
nonlinear, making it complex to find a closed form set of 
analytical solutions for the motion of the spacecraft.  

An alternate form of representing the orbital motion are 
Keplerian elements [ ]a e i fωΩ  where a is the 
semi-major axis, or a maximum distance from the geometric 
centre to a point along the orbital path, e is the eccentricity 
which is a measure of the circularity of the orbit (e = 0 being 
a perfect circle, and e > 1 being a hyperbola), i is the 
inclination of the orbital plane, Ω and ω are angles 
determining the location of the line of intersection between 
the orbital plane and the reference plane, and the periapsis 
respectively, and lastly f is the true anomaly. The latter term 
is the only time-varying parameter, and represents the angle 
between the periapsis of the orbit (the location of the 
minimum distance from the focal point to the orbit path) and 
the actual location of the spacecraft at that point in time.  

The equations of motion given in (1) can be linearly 
mapped from Cartesian Hill coordinates to a set of orbital 
elements by means of a transformation matrix.   
 

 [ ]( )cA δ=X e e  (2) 
 

where [ ]Tx y z x y z=X � � �  is the state vector 
containing the position, r, and velocity, v, vectors of the 
spacecraft in the Hill reference frame at a given time, and 

[ ]1 2a i q qθ= Ωe   is the set of semi-equinoctial 

orbital elements, where θ is the true latitude ( fθ ω= + ), 
and q1 and q2 are sinusoidal functions based on the 
eccentricity e and argument of periapsis ω ( 1 cosq e ω= , 

2 sinq e ω= ). Semi-equinoctial orbital elements were used 
rather than the classic Keplerian element set in order to 
avoid singularities that occur in the equations at circular, or 
near-circular, orbits (i.e. e = 0). The only constraint, or 
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assumption required for this linearization is that the semi-
major axis of the chief orbit be several orders of magnitude 
larger than that of the formation orbit.  

The subscript ‘c’ denotes the chief orbit, while ‘d’ denotes 
that of the smaller deputy, or formation orbit. The difference 
between the two is given by, 
 

 c dδ = −e e e  (3) 
 

The matrix A, and the corresponding inverse matrix A-1, 
represent the linear mapping between the Hill frame and the 
set of orbital elements. The equations for both matrices can 
be found in [7]. 

In order to minimize the required station-keeping of the 
spacecraft, a bounded, or periodic, orbit is advantageous. 
The bounded orbit is essentially one that, assuming the only 
forces are those in the standard two-body problem, will 
return to the same position after a fixed period of time and 
thus, not need any external control to maintain the spacecraft 
in the orbit. The conditions of periodicity are such that the 
period of formation orbit must be equal to the period of the 
NEO in order not to incur any drift. This is done by setting 
the difference in semi-major axes equal to zero since the 
equation for the period of an orbit is a function of only the 
semi-major axis and gravitation constant, µ.  
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where ( )21h a eµ= −   is the angular momentum of the 

spacecraft, and ( )
tan

cos 2
a
r

θκ
ω

= . 

Equation  also demonstrates the difference in complexity, 
and the obvious benefit of switching from the Cartesian Hill 
frame to an orbital element set. 

Given initial conditions for the x and y positions, and the 
radial velocity x� , it is possible to rearrange (4) to find the 
required transversal, or along-track, velocity for a periodic 
orbit. As can be seen from the equation, the calculation is 
independent of the out-of-plane elements, z and z� . 

Once the complete set of initial conditions are determined, 
the orbit is propagated forward for one complete period. As 
mentioned earlier, using the Cartesian Hill coordinates this 
requires the differentiation of 6 time-varying parameters. By 
switching to an orbital element set, there is only one time-

dependant parameter, f, that can be calculated over the 
angular range [ ]0,2π . 

A state-transition matrix, Ф, is used to determine the 
position of the formation spacecraft at any given point in 
time [3]. The matrix determines the sensitivity of the state 
vector X at time t relative to the initial state vector at t0.  
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The state vector of the spacecraft can then be determined 

by, 
 ( ) ( ) ( )0 0,t t t t≈ Φ ⋅  XX X  (6) 

 
A periodic orbit can found for almost any point in space 

surrounding the chief orbit. However, in the case of a 
tracking mission, there are several mission-specific 
requirements that restrict the choice of orbit, such as being in 
close proximity to the surface. As such, an optimizer was 
used to determine the optimal initial state vector based on a 
set of objectives and constraints. 

III. OPTIMAL FORMATION DESIGN PROBLEM 
For the application under investigation, it is required that 

the tracking spacecraft remains at an almost constant 
distance from the asteroid. At the same time it is desirable to 
see the asteroid from different angles. Therefore the problem 
is to design a periodic orbit that minimizes the difference 
between the minimum and the maximum distance from the 
centre of the asteroid:  

 ( )2

1min max min
D

F
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= −
ρ

r r  (7) 

 
Where the solution vector is defined as: 
 
 [ ]0 0 0 0 0 0

Tx y z x z t=ρ � �  (8) 
 
Another desirable property of the formation would be to 

bring the plane of the orbit as close to the NEO as possible 
without crossing into the sphere of influence of the asteroid. 
This is implemented through the square of the difference 
between the maximum distance at any point in the formation 
orbit, and a predetermined minimum distance. In this case, 
as the spacecraft is to fly as close to the asteroid as possible, 
the minimum distance is set equal to the sphere of influence 
of the asteroid, rSOI. 

 ( )2

2min maxSOID
F r

∈
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ρ
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However since the spacecraft cannot enter within sphere 

of influence of the asteroid, an inequality constraint was 



 
 

imposed such that the minimum distance between the 
spacecraft and the NEO is always greater than the radius of 
the sphere of influence,  

 
 min 0SOIC r= − <r  (10) 

IV. OPTIMIZATION PROCEDURE 
The objective functions given in (7) and (9) represent a 

constrained nonlinear programming problem presenting 
several local minima in the desired search domain D. In 
particular it is expected that for almost every position on the 
orbit, i.e. every instant of time, there are several optimal 
solution vectors that locally minimize the objective function. 

A characterization of the search space was performed in 
order to find not only the global minimum over a range of 
angular positions along the orbit of the asteroid, but also to 
find a number of local minima. 

We used a behavioral-search algorithm that tries to collect 
into an archive Ag as many feasible local solutions, or 
proximal to local solutions, as possible. The whole set of 
feasible local minima is called X in the following. The 
behavioral search is hybridized with a domain 
decomposition technique in order to extend the exploration 
of the search space. 

A. Behavioral-Based Search 
A population of virtual agents is deployed in the search 

space. Each agent is endowed with a set of basic actions 
forming a behavior. The entire population evolves through a 
number of steps toward the feasible set X. At each 
evolutionary step, the agents collect clues about the 
environment and implement actions according to an action 
selection mechanism. Some of the actions are devoted to 
acquire new information, others to displace the agents 
toward local minima, other actions are instead made to 
exchange information among the agents.  

The basic idea is that most of the bio-inspired global 
optimization approaches implement some form of basic 
behavior derived from nature: from mating of Evolutionary 
Algorithms (EA) to the flying of bird flocks in Particle 
Swarm Optimization (PSO) to the social behavior of ants in 
Ant Colony Optimization (ACO).  

Some of those behaviors can be classified as social, such 
as crossover in genetic algorithms, because they are devised 
to exchange pieces of information among the individuals. 
Other behaviors can be classified as individualistic because 
they aim at improving the individual status of each 
individual. We implement a set of actions derived from PSO, 
EA and DE (Differential Evolution) and a very simple, basic 
action selection mechanism for individualistic behavior (see 
Fig. 3). Each agent can perform repeatedly three types of 
actions until an improvement is registered or a maximum 
number of attempts is reached. 

  

 
 

Fig. 3. Action selection mechanism 
 

After an initialization is performed by sampling the 
solution space by Latin Hypercube, each solution vector is 
associated to an agent. Each agent is then evaluated and 
social behaviors (such as crossover) are implemented. After 
exchanging information with the other agents, each one can 
implement a set of individualistic behaviors (such as 
mutation, for example). The archive collects all the solutions 
that are considered locally optimal at every evolutionary 
step. Furthermore, at termination the entire population is 
added to the archive. The overall algorithm, called 
Multiagent Collaborative Search (MACS), is represented in 
Fig. 4. 

 

 
Fig. 4. Overall algorithm for the behavioral-bases search. 
 

The search is terminated after a given number of function 
evaluations. For further details on the behavioral search the 
interested reader can refer to [9]-[12].  

B. Domain Decomposition 
Since the number of local minima is expected to be finite 

(for physical reasons), the search space can be decomposed 
into a finite number of subsets, each containing a portion of 
the optimal set X such that 0X D∩ ≠ . The initial domain D 
is progressively decomposed into smaller domains lD D⊆  
according to a decomposition strategy. The decomposition 
strategy is based on the output of the stochastic search step 
and produces a number M of subdomains Dl such that: 
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Decomposition (11) is then iteratively applied to the 

subdomains Dl that need further exploration, so that: 
 
 ( ) ( 1)

1

M d d
l ll

D D −
=

=∪  (12) 

 
where d is the decomposition depth. 
In this implementation we use a simple regular cutting of 

each coordinate into two halves. Since the interest is to 
widely explore the search space and to collect as many 
elements of X as possible, after each stochastic search the 
subdomains Dl with the least number of collected samples 
belonging to X is selected for further decomposition 
provided that the number of times nb its parent subdomains 
have been already decomposed without improvement is 
below a given threshold.  

We use the following merit function to balance the search 
of completely unexplored subdomains against those 
containing elements of X: 

 
 (1 )

l l lD D Dψ υ ϖ υϕ= − +  (13) 

 
where 

lDϖ  is the density of already discovered solutions 

in Dl, lDϕ  is the best fitness in Dl and υ  is a weighting 

factor used to favor either convergence or exploration. 
The partitioning cycle is stopped when a given number of 

subdomains have been generated, or when the size of the 
archive has been exceeded. 

 

 
 

Fig. 5. Hybrid domain decomposition and stochastic search. 
 

The overall algorithm combining the MACS and the 
domain decomposition technique is called EPIC in the 
following (Evolutionary Programming and Interval 
Computation) [10]-[12]. 

C. Constraint Handling Technique 
The algorithm described above solves bound-constrained 

problems. Since in most of the cases however, constraints 
are nonlinear, an extension of the algorithm has been 
developed in order to take into account nonlinear inequality 
constraints. 
At each generation, the population of agents is divided into 
two subpopulations and a different objective function is 
assigned to each one, namely one subpopulation aims at 
minimizing the original objective function while the other 
aims at minimizing the residual on the constraints, defined 
as, 

 ( )
1

min max 0,
m

jD j
F C

∈ =

 =  ∑ρ
 (14) 

 
The two subpopulations are evolved in parallel and agents 

are allowed to jump from one population to the other, i.e. if a 
feasible agent becomes infeasible it is inserted in the 
subpopulation of infeasible agents and assigned to the 
solution of the constraints, on the other hand if an infeasible 
agent becomes feasible it is inserted in the population of 
feasible individuals and allocated to the minimization of the 
original bound constrained objective function F. As a result, 
the final optimal solution is either feasible or minimizes 
infeasibilities. This procedure does not maintain feasibility 
for any agent, therefore once a feasible set has been found 
the perception mechanism is used to ensure that every move 
maintains the feasible population inside the feasible set. If 
F* is the value of the objective function of an agent ρ inside 
the feasible set, the objective function of a new agent 
generated from ρ is then augmented with the maximum 
among the residuals R on the constraints: 
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The described strategy co-evolves two populations with 

two different goals, allows a flexible search for feasible 
optimal solutions: in fact through the described use of the 
perception mechanism, feasibility can be enforced on all 
feasible solutions. In this case the exploration of the solution 
space may be over penalized, thereby reducing the 
convergence rate. Therefore in order to search more 
extensively along the boundary of the feasible region, a 
subset of the feasible solutions is allowed to temporary 
violate the constraint while preserving the feasibility of at 
least the best solution. 

D. Definition of the Search Space 
A number of boundary conditions were set to restrict the 

search space and improve the speed of the program. Given 
that the objective functions are designed to find orbits in 
close proximity to the NEO, small limits were set for the 
distance between the spacecraft and asteroid.  
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Most matrix functions, including the optimizers in 

question, work better when the search space values are 
around unity. Given that the velocities are quite small, on the 
order of 10-9 km/s, the input parameters were scaled up by a 
factor of 109.  

 { } [ ]* * 100 100 µm/sx z ∈ −� �  
 
Lastly the time duration was set for 30 days starting on 01 

January 2010. The time is measured in modified Julian Days  
from 01 Jan 2000 12:00:00 GMT. 

 
 [ ]3693.5 3723.5 MJD2000t ∈  

V. RESULTS 

A. Optimized Solution Vector 
EPIC was run with a total of 10 agents exploring the 

search space. The number of subdomains for the first run 
was limited to 5 and the maximum number of function 
evaluations per subdomain was set to 10000. Fig. 6 shows 
the distribution of the minima at the end of the search. Some 
regions are clearly identifiable.  
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Fig. 6. The cross-comparison of the solution vector ρ using EPIC. The 
distances are measured in km, the velocities in 10-9 km/s and time in 
MJD2000. 

 
From this search, it is simple to find the smallest objective 

function value and extract the optimal initial state vector for 
the orbit, and starting date.  

Fig. 7 shows the resulting formation orbit. The optimized 
initial state vector is, 

 

( ) ( )

0

0

0 7
0 5

0
4

0
4

0 0

0

x

575.44 0
646.62 0.0884
304.15 1.564

10
9.738 2.347
3.517 23.62
1.00 0.468

3653.0

opt opt

x a
y e
z i

x e
y e
z e f

t

δ
δ

δ
δ

δ
δω
δ

−
−

−

−

= =   
   = = −   
   = =

= ⇔ =   = Ω = −   
   = − = −
   

= − =      
=

X e
�
�
�

 
shown in both Hill coordinates, and Keplerian orbital 

elements, where the units are meters, seconds, degrees and 
MJD2000.  

It is interesting to note that both values in the objective 
function only differ after the tenth significant digit. A by-
product of the equations of motion is that the closer the orbit 
is to the asteroid, the more normal the orbital plane becomes 
relative to the asteroid velocity vector. Conversely, the 
farther away the formation orbit is from the chief point, the 
larger the semi-major axis and the more parallel the orbital 
plane. 

Fig. 7 shows the formation orbit relative to the asteroid. 
The period of the formation orbit is equal to the time it takes 
for the asteroid to make one complete revolution about the 
Sun. 

The final orbit has a slight deviation from the desired 
orbital plane, on the order of 300 km. This orbit provides a 
relatively consistent distance from the surface of the asteroid 
and provides good coverage of the surface. 
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Fig. 7.  Orthographic view of the optimal formation orbit, including the 
initial state vector (shown as a diamond), and location relative to Apophis 
(shown as a brown circle). 
 

Note from Fig. 6, that along the t0 coordinate the 
distribution is almost continuous. This evidence confirms the 
fact that an optimal configuration exists for every position 
along the orbit. It also suggests that a globally optimal 
position along the orbit exists that give the minimum of both 
objective functions. 

A second optimization was conducted extending the range 
of t0 to 1 Earth year, from 01 January – 31 December 2010. 
The period of Apophis is slightly less than that of Earth; 
323.6 days. By searching for a full year, we can see the 
effect the orbital position of the asteroid on the initial state 



 
 

vector for formation orbit.  
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Fig. 8. Orbit of Apophis showing the optimal t0 for the two solutions 
(shown as black triangles). The apoapsis and periapsis are also shown for 
reference (green stars) with the first solution near the periapsis, and the 
second solution near the apoapsis. The first search space for t0 is shown in 
blue (bold). 

 
Table 2 lists the upper and lower bounds on the solution 

vector used in the second optimization process. 
 

TABLE 2 
UPPER AND LOWER BOUNDS ON THE SEARCH SPACE FOR EACH VARIABLE IN 

THE SOLUTION VECTOR FOR THE  SECOND OPTIMIZATION 

 x 
(km) 

y 
(km) 

z 
(km) 

x� * 
(10-9 
km/s) 

z� * 
(10-9 
km/s) 

t0 
(MJD 
2000) 

Lower 
bound -5 -5 -5 -100 100 3652 

Upper 
bound 5 5 5 100 100 4018 

 
The optimal initial state vector is given below, and the 

resulting formation orbit in Fig. 9. 
 

( ) ( )

0

0

0 7
0 4

0
4

0
5

0 0

0

x

529.88 0
664.10 0.038

468.73 1.701
10

1.00 8.389
1.95 40.92
9.99 0.755

3789.76

opt opt

x a
y e
z i

x e
y e

z e f
t

δ
δ
δ

δ
δ

δω
δ

−
−

−

−

= − =   
   = − =   
   = = −

= ⇔ =   = − Ω =   
   = = −
   

= − = −      
=

X e
�
�
�

 

 
As with the previous state vector, the units are meters, 

seconds, degrees and MJD2000. 

VI. CONCLUSION 
This paper presents the design and methodology for 

finding an optimal orbit for a spacecraft flying in formation 
with an asteroid. The final orbit presented meets the 
requirements for a NEO tracking mission: close proximity to 
the asteroid with minimal variation in distance in order to 
minimize the pointing errors of the measurement devices. 

The development of a periodic orbit also meets the general 
requirement of cost savings in both propulsion and mass.  

These orbits were optimized for a NEO tracking mission, 
however the methodology can be extended to any mission 
based on the primary and secondary mission requirements.  
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Fig. 9.  Orthographic view of the formation orbit optimized over an 1 year 
period, showing the initial state vector (shown as a diamond), and location 
relative to Apophis (shown as a brown circle). 
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