6,926 research outputs found

    Stochastic Target Games and Dynamic Programming via Regularized Viscosity Solutions

    Full text link
    We study a class of stochastic target games where one player tries to find a strategy such that the state process almost-surely reaches a given target, no matter which action is chosen by the opponent. Our main result is a geometric dynamic programming principle which allows us to characterize the value function as the viscosity solution of a non-linear partial differential equation. Because abstract mea-surable selection arguments cannot be used in this context, the main obstacle is the construction of measurable almost-optimal strategies. We propose a novel approach where smooth supersolutions are used to define almost-optimal strategies of Markovian type, similarly as in ver-ification arguments for classical solutions of Hamilton--Jacobi--Bellman equations. The smooth supersolutions are constructed by an exten-sion of Krylov's method of shaken coefficients. We apply our results to a problem of option pricing under model uncertainty with different interest rates for borrowing and lending.Comment: To appear in MO

    The Stochastic Reach-Avoid Problem and Set Characterization for Diffusions

    Full text link
    In this article we approach a class of stochastic reachability problems with state constraints from an optimal control perspective. Preceding approaches to solving these reachability problems are either confined to the deterministic setting or address almost-sure stochastic requirements. In contrast, we propose a methodology to tackle problems with less stringent requirements than almost sure. To this end, we first establish a connection between two distinct stochastic reach-avoid problems and three classes of stochastic optimal control problems involving discontinuous payoff functions. Subsequently, we focus on solutions of one of the classes of stochastic optimal control problems---the exit-time problem, which solves both the two reach-avoid problems mentioned above. We then derive a weak version of a dynamic programming principle (DPP) for the corresponding value function; in this direction our contribution compared to the existing literature is to develop techniques that admit discontinuous payoff functions. Moreover, based on our DPP, we provide an alternative characterization of the value function as a solution of a partial differential equation in the sense of discontinuous viscosity solutions, along with boundary conditions both in Dirichlet and viscosity senses. Theoretical justifications are also discussed to pave the way for deployment of off-the-shelf PDE solvers for numerical computations. Finally, we validate the performance of the proposed framework on the stochastic Zermelo navigation problem

    Lyapunov stabilizability of controlled diffusions via a superoptimality principle for viscosity solutions

    Full text link
    We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of Lyapunov function to study the stochastic open loop stabilizability in probability and the local and global asymptotic stabilizability (or asymptotic controllability). Finally we illustrate the theory with some examples.Comment: 22 page

    A comparison principle for PDEs arising in approximate hedging problems: application to Bermudan options

    Full text link
    In a Markovian framework, we consider the problem of finding the minimal initial value of a controlled process allowing to reach a stochastic target with a given level of expected loss. This question arises typically in approximate hedging problems. The solution to this problem has been characterised by Bouchard, Elie and Touzi in [1] and is known to solve an Hamilton-Jacobi-Bellman PDE with discontinuous operator. In this paper, we prove a comparison theorem for the corresponding PDE by showing first that it can be rewritten using a continuous operator, in some cases. As an application, we then study the quantile hedging price of Bermudan options in the non-linear case, pursuing the study initiated in [2]. [1] Bruno Bouchard, Romuald Elie, and Nizar Touzi. Stochastic target problems with controlled loss. SIAM Journal on Control and Optimization, 48(5):3123-3150,2009. [2] Bruno Bouchard, Romuald Elie, Antony R\'eveillac, et al. Bsdes with weak terminal condition. The Annals of Probability, 43(2):572-604,2015
    corecore