7 research outputs found

    Moment Matching-Based Distribution Fitting with Generalized Hyper-Erlang Distributions

    Get PDF

    Moment Matching-Based Distribution Fitting with Generalized Hyper-Erlang Distributions

    Get PDF
    This paper describes a novel moment matching based fitting method for phase-type (PH) distributions. A special sub-class of phase-type distributions is introduced for the fitting, called generalized hyper-Erlang distributions. The user has to provide only two parameters: the number of moments to match, and the upper bound for the sum of the multiplicities of the eigenvalues of the distribution, which is related to the maximal size of the resulting PH distribution. Given these two parameters, our method obtains all PH distributions that match the target moments and have a Markovian representation up to the given size. From this set of PH distributions the best one can be selected according to any distance function

    Does a given vector-matrix pair correspond to a PH distribution?

    Get PDF
    The analysis of practical queueing problems benefits if realistic distributions can be used as parameters. Phase type (PH) distributions can approximate many distributions arising in practice, but their practical applicability has always been limited when they are described by a non-Markovian vector–matrix pair. In this case it is hard to check whether the non-Markovian vector–matrix pair defines a non-negative matrix-exponential function or not. In this paper we propose a numerical procedure for checking if the matrix-exponential function defined by a non-Markovian vector–matrix pair can be represented by a Markovian vector–matrix pair with potentially larger size. If so, then the matrix-exponential function is non-negative. The proposed procedure is based on O’Cinneide’s characterization result, which says that a non-Markovian vector–matrix pair with strictly positive density on and with a real dominant eigenvalue has a Markovian representation. Our method checks the existence of a potential Markovian representation in a computationally efficient way utilizing the structural properties of the applied representation transformation procedure

    Constructing Matrix Exponential Distributions by Moments and Behavior around Zero

    Get PDF
    This paper deals with moment matching of matrix exponential (ME) distributions used to approximate general probability density functions (pdf). A simple and elegant approach to this problem is applying Padé approximation to the moment generating function of the ME distribution. This approach may, however, fail if the resulting ME function is not a proper probability density function; that is, it assumes negative values. As there is no known, numerically stable method to check the nonnegativity of general ME functions, the applicability of Padé approximation is limited to low-order ME distributions or special cases. In this paper, we show that the Padé approximation can be extended to capture the behavior of the original pdf around zero and this can help to avoid representations with negative values and to have a better approximation of the shape of the original pdf. We show that there exist cases when this extension leads to ME function whose nonnegativity can be verified, while the classical approach results in improper pdf. We apply the ME distributions resulting from the proposed approach in stochastic models and show that they can yield more accurate results
    corecore